### Challenges for Silicon Pixel Sensors at the XFEL

#### **R.Klanner**

(Inst. Experimental Physics, Hamburg University)

work by

J.Becker, E.Fretwurst, I.Pintilie, T.Pöhlsen, J.Schwandt, J.Zhang

### Table of Content

- 1. Introduction: The XFEL Challenges
- 2.Plasma Effect
- 3. Radiation Damage
- 4. Charge Losses + Surface Effects
- **5.AGIPD Sensor Optimization**
- 6. Summary

#### supported by



Federal Ministry of Education and Research

SPONSORED BY THE



### and done in collaboration with





Robert Klanner - Univ. of Hamburg - Joint Seminar - 26. Oct. 2012

### 1. The XFEL Challenges for Pixel Sensors

- European X-FEL under construction in Hamburg → completion end 2015
- Pulse trains of e.g. 12 keV photons of 220 ns spacing and <100 fs duration



- $\rightarrow$  Pixel sensors for imaging:
- 0, 1 ... >10<sup>5</sup> 12 keV photons per 200 × 200 µm<sup>2</sup> pixel and ~30 000 pulses/sec
- $\rightarrow$  Radiation damage
- $\rightarrow$  Plasma effect/charge explosion
- $\rightarrow$  Charge losses
- $\rightarrow$  Pile-up from preceding pulse



#### 10<sup>35</sup> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \_\_\_\_ 1 1 1 1 1 1 1 1 1 1 [Photons/(s mrad<sup>2</sup> mm<sup>2</sup> 0.1% BW)] XFEL 10<sup>33</sup> FLASH LCLS (seeded) 10<sup>31</sup> FLASH 10<sup>29</sup> $\times 10^{8}$ 10<sup>27</sup> 10<sup>25</sup> PETRA III 20m ID SPring-8 U29 Peak Brilliance **UE65** 10<sup>23</sup> • ESRF ID23 APS U-A BESSY U-49 BESSY 10<sup>21</sup> U-125 PETRA II ALS U5.0 10<sup>19</sup> 10<sup>2</sup> $10^{3}$ 10<sup>5</sup> $10^{6}$ $10^{4}$ 10<sup>1</sup> Energy [eV]

#### Comparison of peak brilliances of X-ray sources



### 1. The XFEL Challenges for Pixel Sensors: AGIPD

AGIPD = Adaptive Gain Integrating Pixel Detector (Bonn-DESY-Hamburg-PSI)



- Hybrid p<sup>+</sup>n pixel detector
- 1 Mpixels of 200 x 200  $\mu m^2$
- 500 µm thick Si

- $E_{y} = 3 20 \text{ keV}$
- Dynamic range: 1 to >10<sup>4</sup> (12 keV  $\gamma$ 's)
- Adaptive gain switching to 3 ranges
- ~ 350 stored images/pulse train
- Trigger + Fast Clear



### 2. Plasma Effect and Charge "Explosion"

#### Plasma effect\*):

- $10^5~12.4~\text{keV}$  y's in (200  $\mu\text{m})^2$ 
  - > ~ 5x10<sup>13</sup> e-h pairs/cm<sup>3</sup> » n<sup>+</sup> doping of O(10<sup>12</sup> cm<sup>-3</sup>)
  - → After ~ps a neutral e-h plasma forms, which erodes by ambipolar diffusion
  - → Once charges are separated, charge repulsion spreads charge clouds
- $\rightarrow$  Delayed charge collection
- Spread of collected charge (with a strong dependence on E-field)

Experiment strip-sensor: multi-TCT with sub-ns laser with different  $\Lambda_{abs}$ 

- + detailed simulations (WIAS-Berlin)
- \*) e-h annihilation here negligible at XFEL, not the case for ions !

J.Becker et al., NIMA 615(2009)230, J.Becker et al., NIMA 624(2009)716



Robert Klanner - Univ. of Hamburg - J

Current transients for 450 µm p<sup>+</sup>n sensor – V<sub>dep</sub> = 140 V for ~ 3×10<sup>5</sup> 1 keV photons focused to Ø ~10 µm





Charge collected on strip sensor with 80 µm pitch

### 2. Plasma Effect and Charge "Explosion"

Comparison simulation (Gärtner - WIAS) with measurements (J.Becker):



### 2. Plasma Effect and Charge "Explosion"

#### Normalized point-spread functions for 12 keV y's focused to $\varnothing$ ~10 µm



High bias voltage (>500 V) desirable to reduce influence of plasma effect [not shown: same conclusion if a charge collection time < 60 ns is required]



### 3. Radiation Damage

XFEL requirements: 1 GGy (SiO₂) for 3 years operation (non-uniform !)
Few data on X-ray damage for high-ohmic structures for such high doses
→ Work at UHH:

- Irradiate test structures from different vendors to extract "microscopic" and "macroscopic" parameters due to X-ray radiation damage
- "Understand" impact of above parameters on sensor performance, via measurements on irradiated sensors and detailed TCAD simulations
- Optimize sensor design using TCAD simulations
- Order "optimized" sensors (Aug. 2012) and verify performance (early 2013)

#### Effects of X-ray radiation damage for p<sup>+</sup>n sensors:

- No bulk damage for  $E_{\gamma}$  < 300 keV
  - $\rightarrow$  "Surface" damage: Build-up of oxide charges and Si-SiO\_2 interface traps
    - $\rightarrow$  Accumulation layers form (or increase)
    - $\rightarrow$  High field regions appear reducing the breakdown voltage
    - $\rightarrow$  Leakage currents increase due to interface states
    - $\rightarrow$  Depletion voltage and inter-pixel capacitance increase
    - $\rightarrow$  Charge losses close to the Si-SiO<sub>2</sub> interface occur (increase)



### 3. X-ray Induced Defects in Si Sensors





### 3. X-ray Induced Defects in Si Sensors





## 3. Damage of SiO<sub>2</sub> and at Si-SiO<sub>2</sub> Interface



Robert Klanner - Univ. of Hamburg - Joint Seminar - 26. Oct. 2012

### 3. Characterization of Microscopic Defects: D<sub>it</sub>

Test structures (diff. vendors + crystal orientations, oxide thickness, + ... )



300

\*) Temperature  $T \rightarrow E_c - E_{it}$  (T dependence of Fermi level) υн Robert Klanner - Univ. of Hamburg - Joint Seminar 🗖 Universität Hamburg DEP EORCHUNC I DEP IEURE I DEP RUDUN

### 3. Characterization of Microscopic Defects: N<sub>ox</sub>

#### C/G-V curves for CMOS-C:



For details and (some of) the experimental complications, see: J.Zhang et al., JSR19/3(2012)340,







### 3. Summary: Dose Dependence of $N_{ox}$ and $J_{surf}$

Vendors: CiS, Hamamatsu, Canberra; Crystal orientations: <111>,<100>; Insulator: SiO<sub>2</sub> (335-700 nm), with and without additional 50 nm Si<sub>3</sub>N<sub>4</sub>





Robert Klanner - Univ. of Hamburg - Joint Seminar - 26. Oct. 2012



E-field in oxide is not a problem for N<sub>ox</sub> and J<sub>surf</sub>



### 3. Annealing of $N_{ox}$

#### MOS-C and GCD irradiated to 5 MGy and annealed at 60 and 80°C

- CiS <111> with ~350 nm SiO<sub>2</sub> + 50 nm Si<sub>3</sub>N<sub>4</sub>

J.Zhang et al., arXiv:1210.0427(2012)



- Described by "tunnel anneal model" [T.R. Oldham et al., 1988]  $N_{ox}(t) = N_{ox}^0 \cdot (1 + t/t_0)^{-\frac{\lambda}{2\beta}}$  with  $t_0(T) = t_0^* \cdot \exp\left(\frac{\Delta E}{k_B T}\right)$ 

 $1/\lambda$  ... width of hole trap distr. in SiO<sub>2</sub> t<sub>0</sub>(T) ... tunneling time constant  $\beta$  ... related to tunnel-barrier height  $\Delta E$  ...  $E_{trap} - E_{Fermi}$ 



### 3. Annealing of $N_{ox}$

"Tunnel anneal" model: How to obtain a non-exponential t-dependence?

T.R.Oldham et al., IEEE Trans.NS-33/6(1986)1203 - (with some modification by J.Zhang/R.Klanner)





### 3. Annealing of N<sub>it</sub> - Microscopic View

#### GCD irradiated to 5 MGy and annealed 80°C

DER FORSCHUNG I DER LEHRE I DER BILDUN

- CiS <111> with ~350 nm SiO<sub>2</sub> + 50 nm Si<sub>3</sub>N<sub>4</sub> J.Zhang et al., arXiv:1210.0427(2012)



### 3. Annealing of $J_{surf}$

MOS-C and GCD irradiated to 5 MGy and annealed at 60 and 80°C

- CiS <111> with ~350 nm SiO<sub>2</sub> + 50 nm Si<sub>3</sub>N<sub>4</sub> J.Zhang et al., arXiv:1210.0427(2012) Annealing behavior of surface current density 10 [µA/cm<sup>2</sup>] extrapolation Surface current density [ $\mu$ A/cm<sup>2</sup>] 10 °C step density 0°C Surface-current extrapolation power-law fit 80 ° C exponential fit 80 60°C 100 www.enebawr.fit.80exponential ft 60 ° C J.Zhang 10<sup>1</sup>  $10^{2}$ 10<sup>3</sup> 10<sup>2</sup> 10<sup>-2</sup> 10<sup>-1</sup> 10<sup>0</sup> 10<sup>3</sup> 10<sup>1</sup> Time [min] Time [days] (~3 years)
- Described by "two reaction model" [M.L. Reed 1987]

$$I_{surface}(t) = I_{surface}^{0} \cdot (1 + t/t_1)^{-\eta} \quad \text{with} \ t_1(T) = t_1^* \cdot \exp\left(\frac{E_{\alpha}}{k_B T}\right)$$

- $\frac{E_{\alpha}}{k_BT}$   $\begin{pmatrix} n = k_1/2k_2 \\ Dangl. bonds: \frac{d}{dt}[Si] = -k_1[Si][H] \\ H_2 \text{ formation: } \frac{d}{dt}[H] = -2k_2[H][H] \\ t_1(T) \dots \text{ characteristic time constant} \\ E_a \dots \text{ activation energy}$
- $\rightarrow$  Fast annealing: At 20°C ~50% annealing in 5 days (assuming model is correct!)

Message: N<sub>ox</sub> and J<sub>surf</sub> anneal with time



### 3. Impact of Radiation Damage on Sensors

#### Sensors irradiated:

- AC coupled from CIS (80 µm pitch)
- DC coupled from Hamamatsu (50 µm pitch)



#### p<sup>+</sup> on n Si strip sensor:

- <100> n-substrate
- High resistivity: 2 5 k $\Omega$ ·cm
- Thickness: 285  $\pm$  10  $\mu$ m
- Active area: 0.62 cm<sup>2</sup>
- "Oxide": 300 nm SiO<sub>2</sub>+50 nm Si<sub>3</sub>N<sub>4</sub>
- Strip length: 7.8 mm
- Strip pitch: 80 μm
- Strip number: 98

#### X-ray irradiation environments:

- @DESY DORIS III beamline F4
- Typical energy is 12 keV
- Dose rate in SiO<sub>2</sub>: 200 kGy/s
- Doses: 1 MGy
- Irradiated sensors:

sensor 1: irradiated without bias sensor 2: irradiated with 35 V bias



### 3. Impact of Radiation Damage on Sensors: I<sub>dark</sub>

#### AC-coupled CIS sensor:



#### Interface current (D<sub>it</sub>) dominates

- Current from depleted interface (E-field)
- Interface area changes with  $V_{\mbox{\tiny bias}}$ 
  - $\rightarrow$  seen by X-ray users

UH

Universität Hamburg

→ minimize depleted interface area (→ minimize gap between implants/Al)

#### Important for sensor optimization





### 3. Impact of Radiation Damage on Sensors: V<sub>depl</sub>

#### AC-coupled CIS sensor:



Effects of  $N_{\text{ox}}$   $\rightarrow$  increase of electrons in accumulation layer

- Step in  $1/\ensuremath{C^2}$  when undepleted regions below  $\mbox{SiO}_2$  separate
- Voltage required to deplete entire sensor depends on  $N_{\mbox{\scriptsize ox}}$

No significant impact - however, good to know



### 3. Impact of Radiation Damage on Sensors: V<sub>bd</sub>

#### Simulations 2-dim [x, z and r, z] and 3-dim

 $N_{ox} \rightarrow$  accumulation layer  $\rightarrow$  changes curvature p<sup>+</sup>-depletion  $\rightarrow$  changes E-field



Breakdown ( $V_{bd}$ ) depends on  $N_{ox}$ ,  $t_{ox}$ ,  $p^+$ -implant, Al-overhang, potential on top of sensor (passivation layer), technology, etc.

Major challenge to reach  $V_{bd}$  > 500 V after irradition  $\Lambda$ 



### 4. Charge Losses close to Si-SiO<sub>2</sub> Interface

Experiment: TCT (Transient Current Technique) Worry: Do charges trapped at interface cause pile-up ? L 600nm laser ( $\lambda_{att} \sim 3\mu m$ ) R Positive Charges  $(N_{ox}, D_{it})$ AL AL AI AI SiO2 p+  $\rightarrow$  e-accumulation + potential minimum h e-h pairs  $\rightarrow$  Charges stored ("lost") p<sup>+</sup>n strip sensor: 50 $\mu$ m pitch, N<sub>eff</sub>=10<sup>12</sup>cm<sup>-2</sup> electrostatic potential e accumulation transients for strip R at x=20 µm J.Schwandt U = 200V humid - 1MGy 14 current [A] 0 12 no losses E-field electron losses 10 Signal of R Potential [V] ----- hole losses 10 30 ۲ [um] 24 18 hole losses (mainly e-signal) 12 20 no losses (e+h signal) 30 electron losses **T.Pöhlsen** (mainly h-signal) 20 40 10 30 LULU X [um] 24 26 28 30 32 time [ns]

#### $\rightarrow$ Significant charge losses observed



### 4. Charge Losses close to Si-SiO<sub>2</sub> interface

- Losses limited to few  $\mu m$  below SiO\_2
- Charges spread in ps over acc. layer
- Time to reach equilibrium after losses 10–100  $\mu s$  » 220 ns

Charge losses no problem

## <u>..</u>

#### Side remark:

TCT with focused light and few µm penetration:

- An excellent tool to study the dependence of accum.layers on radiation damage and the (time/ humidity dependent) boundary conditions on the sensor surface
- It is observed that charge losses depend on time, with constants strongly correlated with humidity (→ surface conductivity ???)
- Time constants differ by factor 120

T.Pöhlsen et al., arXiv:1207.6538(2012), (subm. to NIM-A)

Hole losses vs. time after changing bias voltage from 500 V to 200 V; p<sup>+</sup>n strip sensor, 50 µm pitch, 0 Gy. 600 nm laser, 100k eh-pairs injected





### 4'. Surface Conductivity and Steady-State

Another way to measure the time dependence of surface potentials:





### 4. Charge Losses and Surface Boundary Conditions

Do we care what happens on the surface (passivation) of the sensor?



### 5. AGIPD Sensor: Specifications

#### Sensor specifications (based on science and feasibility)

|               | Parameter                         | Value                     | Comments                                                                                                                                |
|---------------|-----------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| [             | mechanical thickness              | 500±20 μm                 | mounting tolerances, X-ray conv. efficiency                                                                                             |
| $\rightarrow$ | flatness (sensors after cutting)  | < 20 µm                   | bump bonding,:value to be discussed (v. t. b. d.)                                                                                       |
| $\rightarrow$ | distance pixel edges to cut edges | I200 μm                   | dead space for science                                                                                                                  |
| $\rightarrow$ | n doping                          | <b>3-8</b> kΩ ⋅ cm        | depletion voltage, sideway depletion at edges                                                                                           |
| $\rightarrow$ | dead layer n⁺-side                | < 0.5 µm Al, < I µm n⁺ Si | minimize, but no compromise on breakdown                                                                                                |
| [             | doping non-uniformity             | < 10%                     | distortions in charge collection                                                                                                        |
| [             | pixel dimensions                  | 200 μm x 200 μm           | see sensors design                                                                                                                      |
| [             | nominal operating voltage         | 500∨                      |                                                                                                                                         |
| <b>→</b>      | breakdown voltage                 | > 900 V                   | Sensor should operate stably at > 900 V, high<br>voltage options for high photon density: mounting,<br>pulse shape, dead space at edges |
| [             | coupling type                     | DC                        |                                                                                                                                         |
| [             | inter-pixel capacitance@500V      | 500 fF                    | noise, cross-talk                                                                                                                       |
| [             | total dark current sensor@500V    | 50 μA                     | power                                                                                                                                   |
| [             | max. dark current/pixel@500V      | 50 nA                     | noise, operation of read-out ASIC                                                                                                       |
| ſ             | max. dark current CCR@500V        | 20 µA                     |                                                                                                                                         |



### 5. AGIPD Sensor: Optimization

#### **Optimization using TCAD** with radiation damage parameters

#### Performance parameters optimized

- Breakdown voltage
- Dark current
- Inter-pixel capacitance
- Dead space

#### I. Pixel:

- Gap
- Al overhang
- Radius of implant and Al at corners
- 2. Guard-ring structure + sensor edge
  - Number of rings
  - Implantation width
  - Spacing
  - Al overhangs
  - Radii
  - Scribe line

#### 3. Process parameter:

- Junction depth
- Oxide thickness
- Overall passivation



J.Schwandt et al., arXiv:1210.0430(2012)



### 5. AGIPD Sensor: Optimization Strategy

- Performance to be optimized:
  - Pixel: I. Breakdown
    - 2. Surface current
    - 3. Inter-pixel capacitance
  - Guard-rings: 1.V<sub>bias</sub> (1000 V?) over 1.2 mm for doses between 0 and 1 GGy (nonuniform) 2. Bulk not depleted at scribe line (no leakage current from the edge)
- Strategy of guard-ring (GR) optimization (2D simulations in (x,y) and (r,z) coordinates ):
  - 0 GR: Study breakdown behavior of 0 GR ( CCR only ) for different oxide charges as function of oxide thickness and Al overhang
  - Estimate number of floating GRs for 1000 V
  - Vary spacing between rings, implant width and overhang to achieve maximum  $V_{\rm bd}$   $\approx$  equal electric field
  - Minimize space required
- Strategy of pixel optimization (2D "strip sensor" calculation used ):
  - Optimize oxide thickness, AI overhang, gap and implantation depth with respect to breakdown voltage, dark current and capacitance
  - Extrapolation of dark current and capacitances to "3D values"
  - Check breakdown voltage + dark current with 3D simulation (only 1/4 pixel used due to grid size) J.Schwandt et al., arXiv:1210.0430(2012)

#### Discuss only guard ring optimization due to lack of time



### 5. Guard Ring Optimization: 0 GR $V_{bd}$ vs. $d_{ox}$ and $d_{p+}$

2-D (x,y) simulations (for 0 guard ring - GR):



- Si below Al overhang gets depleted  $\rightarrow$  voltage drop over larger region  $\rightarrow$  E smaller for a given (high)  $N_{ox}$ :  $V_{bd}$  increases with  $\downarrow d_{oxide}$  and  $\uparrow p^+$ -implant depth

# For high radiation damage optimization is very different than for unirradiated sensor – $V_{bd} \sim 70 V$ (0 GR) can be reached



<u>/!</u>

### 5. Guard Ring Optimization: 15 Guard Rings vs. $V_{bd}$

### **Optimize GR layout**

- 1 gap (0 GR)  $\rightarrow$  V<sub>bd</sub> ~70 V  $\rightarrow$  for V<sub>bd</sub> ~ 1000 V need 16 gaps (15 GR)
- Optimize spacing, width implant, Al overhang for equal max. E-field and minimal space
- + Assure that depletion region does not touch cut edge (critical for low N<sub>ox</sub> !)

#### Result:

- Gap pixel to CCR: 20  $\mu m$
- Width implantation window CCR: 90  $\mu m$
- Al overhang CCR: 5 µm
- Gap CCR to 1st guard ring (GR): 12  $\mu m$
- Width of implantation window GR 25  $\mu m$
- Al overhang left (towards pixel) of GR 1, 2, ... 15: 2, 3, ...
   I6 μm
- Al overhang right (away from pixel) of GR I 15:5 μm
- Gap between GR 1-2, 2-3, ... 14-15: 12, 13.5, ... 33 μm
- Distance pixel to cut edge: 1.2 mm



GDS printout: J.Schwandt and J.Zhang J.Schwandt et al., arXiv:1210.0430(2012)

#### Optimized pixel and guard ring layout meets all specifications



### 6. Summary

### Challenges for pixel sensors at E-XFEL have been studied at UHH:

- Plasma effect
- Charge losses close to Si-SiO $_2$  interface surface effects
- Pile-up
- Radiation damage

Sensor optimized using TCAD with radiation damage implemented

- Design optimization depends on dose
- 15 guard rings needed for  $V_{bd}$  O(1000 V)
- Layout + technological parameters found which meet specifications

Sensor ordered  $\rightarrow$  delivery early 2013

**Comment:** Compared to bulk damage little efforts in the detector community on the study of X-ray damage for sensors (and there have been surprises in the past !)

Many thanks to UNI-Hamburg- + AGIPD-colleagues + sponsors





### The End

