The CMS Tracker Upgrade for HL-LHC

Project overview and outlook

Outline

> The HL-LHC Tracker: requirements Overview of R&D • Development of " p_T modules" > Tracker geometries Expected performance > Ultimate pixel upgrade Summary and outlook

The Tracker in CMS

The Tracker layout

In a nutshell...

TID CP TID		Volume Active are Modules Front-end Read-out Bonds Optical ch Raw data Power dis Operating	ea chips channels annels rate: sipation: T:	23 m ³ 210 m ² 15'148 72'784 9'316'38 24'000'(36'392 1 Tbyte 30 kW -10°C	52 000 /s
TIB TEC TC TC TCB	Detector surface (m ²) 1000 1001	First Si strip	CE MARK NA11 ■	CDFII DELPHI DO OF 97 DO II AMS 1 Barbar LEP: DELPHI ALEPH L3 OPAL	GLAST ATLAS
DESY - Joint Instrumentation Seminar	+	1960 1970	1980 June 8, 2	1990 2000	Year

The HL-LHC

Basic requirements and guidelines - I

Radiation hardness

- O Ultimate integrated luminosity considered ~ 3000 fb⁻¹
 - ★ To be compared with original ~ 500 fb⁻¹

➤ Granularity

- Resolve up to 200÷250 collisions per bunch crossing
 - ★ Nominal figure of 5×10^{34} cm⁻² s⁻¹ @ 40 MHz corresponds to ≥ 100 collisions
 - Keep 20 MHz as worst-case limit
- Maintain occupancy at the few % level
- Requires much shorter strips! -

Improve tracking performance

- Reduce material in the tracking volume
 - ★ Improve performance @ low p_T
 - **\star** Reduce rates of nuclear interaction, γ conversions, bremsstrahlung...
- Reduce average pitch
 - ★ Improve performance @ high p_T

Substantially higher channel count!

DESY - Joint Instrumentation Seminar

Basic requirements and guidelines – II

Tracker input to Level-1 trigger

- μ, e and jet rates would exceed 100 kHz at high luminosity
 - ★ Even considering "phase-1" trigger upgrades
- Increasing thresholds would affect physics performance
 - ★ Performance of algorithms degrades with increasing pile-up
 - Muons: increased background rates from accidental coincidences
 - Electrons/photons: reduced QCD rejection at fixed efficiency from isolation
- Even HLT without tracking seems marginal
- Add tracking information at Level-1
 - ★ Move part of HLT reconstruction into Level-1!

Full-scope objectives:

- Reconstruct "all" tracks above 2 ÷ 2.5 GeV
- Identify the origin along the beam axis with $\sim 1 \text{ mm}$ precision

General concept

 \succ Silicon modules provide at the same time "Level-1 data" (@ 40 MHZ), and "readout data" (@ 100 kHz, upon Level-1 trigger)

- The whole tracker sends out data at each BX: "push path" \odot
- \succ Level-1 data require local rejection of low-p_T tracks
 - To reduce the data volume, and simplify track finding @ Level-1 \odot
 - ★ Threshold of ~ 1+2 GeV \Rightarrow data reduction of one order of magnitude or more

\blacktriangleright Design modules with p_T discrimination ("p_T modules")

- Correlate signals in two closely-spaced sensors \odot
 - Exploit the strong magnetic field of CMS \star

 \odot

fail

Sensors R&D - I

➢ HPK project

• Different materials

- ★ Float-zone (FZ), Magnetic Czochralski (MCz), Epitaxial (Epi)
- Different thicknesses and technologies
 - ★ n-bulk, p-bulk with p-spray and p-stop isolation
 - ★ Wafers with 2nd metal layer
- Several strip and pixel geometries
- \odot ~ 6 wafers of each material; >150 wafers in total
- Exhaustive program of proton and neutron irradiations
- Lab tests complemented by device simulations

Gaining excellent understanding of materials

- Doping profiles and process details
- Almost reverse engineering!

Sensors R&D - II

HPK project main goals

• Choose material and technology for outer Tracker Upgrade

- ★ Target: early 2013, then move on to sensor prototyping
 - Current activities likely beyond the scope of the immediate CMS needs!

• Provide a solid baseline in planar technology for pixel phase-2 upgrade

- ★ To be compared with more "exotic" technologies
 - Ongoing R&D on diamonds and 3d silicon

Qualification run @ Infineon

- 25 wafers produced
 - ★ p-on-n 300 µm thickness as in present TK
- Basic tests done, irradiations planned
 - ★ Nearly perfect quality out of the box!
 - E.g. 0.5% faulty strips, likely to improve in the future
- Potential to explore different options
 - ★ P-type bulk, thinner sensors, and even 8" wafers!
- Very promising for the future!

Electronics system

Concept well-advanced, based on ongoing developments

Data links: Low-Power GigaBit Transceiver (LP-GBT)

- Further evolution of GBT (under development)
- 65 nm technology, simplified to minimize power and footprint size
- Same bandwidth (5 Gb/s total, 3.2 Gb/s for data)
- To be integrated <u>at module level</u>, with lightweight opto-coupler
 - * Good match to expected bandwidth *including L1 data, readout data and controls!*

Power: DC-DC converters

- Pursue ongoing developments
 - ★ Will be used already in the Pixel Upgrade
- Key development to reduce material in the tracking volume
 - ★ Bring in current @ 10÷12 V: gain one order of magnitude in conductor cross-section
 - ★ Dominant contribution to material in present Tracker
- Also integrated <u>at module level</u>
 - ★ Reasonable match with expected power consumption

> Fully integrated modules: the module is the system!

Cooling and mechanics

\succ Cooling: two-phase CO₂ is the baseline

- Evaporative system + excellent thermodynamic properties of CO₂ can provide low-mass, high-efficiency cooling
- Experience being gained with phase-1 pixel system
 - ★ By far the largest system ever built in HEP!
- No dedicated phase-2 R&D yet

Mechanics

- Studies of possible endcap geometries ongoing (Lyon)
 - ★ Two-phase cooling prefers simple pipe geometries
 - ★ Adopt rectangular modules as in barrel
 - To avoid too many module flavours
 - ★ Several options under study
- Mechanics for barrel "double-stack" geometry under development (FNAL)
 - ★ Layers closely-spaced in pairs (more details later) \Rightarrow common supporting mechanics
- Prototyping of 2S modules to start this year
 - ★ Preparation work ongoing

More on p_T modules working principle

- Sensitivity to p_T from measurement of $\Delta(R\phi)$ over a given ΔR
- For a given p_T , $\Delta(R\phi)$ increases with R
 - \odot A same geometrical cut, corresponds to harder p_T cuts at large radii
 - At low radii, rejection power limited by pitch
 - Optimize selection window and/or sensors spacing
 - * To obtain, ideally, consistent p_T selection through the tracking volume

- In the end-cap, it depends on the location of the detector
 - End-cap configuration typically requires wider spacing

DESY - Joint Instrumentation Seminar

p_T modules types: "2S Module"

- 2x Strip sensors
- Light and "simple"
- No z information
- Suitable for outer part

First version of FE ASIC available and functional CBC (CMS Binary Chip)

- Power
 - ★ CBCs: 1.2 W
 - Concentrators: 0.36 W
 - ★ Low-power GBT: 0.5 W
 - ★ GBLD + GBTIA: 0.2+0.1 = 0.3W
 - ★ Power converter: 0.4 W
 - Total 2.8 W
- > ≈ 5 cm long strips, ≈ 90 µm pitch, ≈ 10x10 cm² overall sensor size
- Wirebonds from the sensors to the hybrid <u>on the two sides</u>
 - 2048 channels on each hybrid
- Chips bump-bonded onto the hybrid
- Prototyping to start during 2012!

DESY - Joint Instrumentation Seminar

The hybrid is the key element for the module integration!

Thermal modelling

FEA results encouraging

- ΔT from contacts to hottest point on sensor ~ 5°C
- Same temperature on both sensors
- Gradient across sensor ~ 2°C

DESY - Joint Instrumentation Seminar

Module design development

Several new challenges

• Inherent to electronics

- ★ Bump bonding
- ★ Novel technologies for hybrids
 - ✤ Yield, reliability, cost...
- * ...

• Related to the overall assembly

- ★ Two sensors with one hybrid!
 - Precision
 - Support for wirebonding
 - Stiffness of the assembly
 - * ...
- New hybrid technologies, lower mass target
 - New materials
 - Surface treatment/gluing
 - ٠....

- Strategy: build simplified prototypes
 - Design and procure circuits implementing:
 - ★ Bond pads
 - ★ Resistors for power dissipation
 - ★ Lines for connectivity tests
 - Qualify assemblies under all aspects
 - Ahead of / in parallel with development of functional components

Prototyping

WP1: gluing techniques

- Choice of glues, treatment of surfaces, size and location of glue joints.
- Cold tests, irradiation tests

WP2: choice of materials

- Choice and thickness of CF
- Research on new C-based materials
 - ★ Test gluing, irradiation, cold

WP3: wirebonding tests

- Optimize design of sensor support in the frame (sensors-FEH)
- Optimize module support for bonding
 - Feedback to design of hybrid and HV kapton

> WP4: thermal tests

• Measure heat transfer efficiency

WP5: Deformation tests

 Measure deformations in cold in a lab setup

WP6: Vibration tests

• Test module under realistic vibrations that can be expected during transport

WP7: Module assembly

- Develop high-precision automatized and reproducible assembly procedure
- Feedback to module design

WP8: FEA

- Thermal and deformation calculations.
- Guide module design and compare with WP4 and WP5
- ➢ WP9: 3d modelling
 - Repository of drawings.

p_T modules types: "VPS Module"

- Strip / Pixel module with vertical interconnections
- Single chip connected to top and bottom sensors
- Analogue paths through interposer from top sensor, segmented in ~ cm long strips
- Bottom sensor gives z info (~ mm long pixels)
- Electronics and connectivity (interposer) are technological challenges (yield, robustness, mass, large-size module)
- Several developments ongoing in parallel
 - 2D demonstrator chip functional
 - TSVs functional, 3D assembly difficult
 - Technology for interposer still an open problem
 - Data processing simulation started
 - Option to use active edge sensors

p_T modules types: "PS Module"

Sensors:

- Top sensor: strips
 - * 2×25 mm, 100 μm pitch
- Bottom sensor: long pixels
 - * 100 μm × 1500 μm
- \approx 5x10 cm² overall sensor size

Readout:

- Top: wirebonds to "hybrid"
- Bottom: pixel chips wirebonded to hybrid
- Correlation logic in the pixel chips
- No interposer, sensors spacing tunable

Power estimates

- ★ Pixels + Strips + Logic ~ 2.62 + 0.51 + 0.38 W = 3.51 W
- ★ Low-power GBT + GBLD + GBTIA ~ 0.5 + 0.2 + 0.1 = 0.8 W
- ★ Power converter ~0.75 W

• Total ~ 5.1 W, pixel chip is the driver

21

June 8, 2012

Summary of PS module features

"Horizontal" transmission

- Path for data longer, but not relevant in power budget, driven by pixel chip
- No interposer. Potentially lighter.
- \odot Sensors spacing is tunable with nearly no drawback up to ~ 4 mm.
 - **★** Can be used at low radii (down to $R \ge 20$ cm but not lower!)
 - Helps for z_0 resolution.
 - \star Can be used also in endcap.

> Two halves of the module independent

- Inefficiency for stub finding in the middle.
- But can be solved with TSVs
 - ★ R&D ongoing, very encouraging results

Optimized design for large production / large detector

- Makes best use of advanced technologies for high-density substrates
- Relies on commercial technologies
 - * But do they work for our "product"? R&D needed!
- Self-contained building block

Further improvement: reduce pitch on strip sensor to 50 μm

- Additional ~500 mW power, wirebonding pitch 50 μm on both sides
- Better resolution on $\Delta(R\phi)$: from 41 µm to 32µm (25% improvement)
- Improve p_T discrimination and tracking resolution with ~ no impact on module design and mass

June 8, 2012

PS module: status and outlook

- Electronics substantially less developed compared to 2S module
- Finite Element Analysis performed using present power estimates
 - Cooling the pixel sensor is a challenge
 - Novel materials will hopefully provide a low-mass solution
- Overall power budget exceeds capability of present DC-DC converter
 - Further developments needed. A second converter would be highly undesirable.
- Expect that the development of this module will follow the 2S module with ~1 year delay
 - Adopt wherever possible common or similar technical solutions, as well as coherent concepts and procedures to validate the design

Evaluation of different tracker geometries and options: layout modelling

Dedicated standalone software package[©]

© N. De Maio, S. Mersi, G. Bianchi

Based also on work from V. Karimaki and G. Hall

Allows to place in space active and passive volumes

• Starting from a small sets of simple parameters

Simple (semi-automatic) modelling of services

Material on + Material for services active elements + automatically routed

- Implements estimates of tracking performance
 - Use measurement errors to estimate the errors in track fit parameters
 - Multiple scattering treated as (correlated) a measurement error

- As well as fraction of interacting particles
- Can be used in the same way to evaluate trigger performance potential

Validated by modelling the present tracker

Excellent accuracy out of the box!

Only a glimpse of some functionalities...

Summarize results in three rapidity regions

Roughly same number of tracks expected

DESY - Joint Instrumentation Seminar

Example of layout

DESY - Joint Instrumentation Seminar

Optimization of module parameters

Keep as ideal targets:

- <1% efficiency @ $p_T = 1$ GeV
- maximize efficiency @ $p_T = 2 \text{ GeV}$
- Limit choice of spacing to "a few" different values
- Optimize width of acceptance window at the same time

• between 3 and 9 strips for the example below

Stub finding and L1 tracking potential (calculated)

From layout modelling to CMS simulation

- The software produces also geometry files for CMS simulation and reconstruction software
 - Including material modelling
 - ★ Some "features" still to be fixed
- CMS software needs then to be "adapted" to work with the new geometry
 - Full automatization for any possible geometry not really feasible....

Will be used to keep geometry and material upto-date once the overall layout is chosen

Stub finding in simulation

Previous layout in CMS simulation

Status and outlook

- Indications that data reduction and stub finding work rather well even in the worst-case location
- p_T modules can be used down to ≥ 20 cm, with relatively large sensor spacing
- Tuning from layout modelling validated
 End cap still to be checked
- N.B. Stub rates are a crucial input for the design of the electronics system!
 - Studies to be pursued. Digitizer, clusterizer and front-end logic to be developed coherently with electronics (and sensors) R&D
- No concept, so far, to go from stubs to L1 tracks with this layout
 - But work is now ongoing...

Optimized layout of L1 track finding The "long-barrel" double-stack layout

Stubs, Tracklets, L1 Tracks

Hierarchical logic to find L1 tracks

- Within double-stack, each lower module is combined with two upper modules to form Tracklets
 - ★ Geometry helps to keep problem "local"
- Tracklets in each layer are extrapolated to the other two layers
 - ★ Possible to find a track if there is at least one tracklet
 - N.B. in this layout also the outermost layer is pixellated!
 - + Impact on power and cost!
- Remove duplicates
- Concept appears to be feasible
- Only defined strategy to deliver L1 tracks so far
- Data reduction, stub and tracklet rates verified in CMS simulation and reconstruction

Alternative approach to L1 tracks

Pattern matching in a generic layout

- Associative Memories successfully used in CDF
- Will be used for the ATLAS FTK
 - ★ At Level-2!
- Applicable to our case?
- Work started, a few groups interested
- Started looking also into "data formatting"
 I.e. How you get the all the needed data in a given back-end crate of processors

# Info	Title	Flag Status	# Prede	Expected	Expecte d End	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
0 4 8	CMS Tracker Upgrade	<i>•</i>	000000	1/1/11	12/21	2007	2000	CMS Track	er Upgrade	2011	2012	2015	2014	2015	2010	2017	2010	2015	2020	2021	LULL	2025
2 🔘	Study/design of trigger architecture	÷		1/1/11	10/9/13		Study/des	ign of trigger	architecture	3.01 years			-									
32 🕥	Study of substrate technologies	÷		1/3/11	12/4/12		Study	of substrate t	echnologies	2.09 years ?		-										
38 🕲	Materials and technologies for module	÷.	32FF	1/3/11	12/4/12	Materials	and technolog	ies for modul	e mechanics	2.09 years ?												
34 🕥	Sensors material, technology, thickness	÷		1/3/11	12/4/12		Sensors mate	rial, technolog	y, thickness	2.09 years ?		-										
33 🔘	Options for opto packaging	÷.	38FF	1/3/11	12/4/12		C	ptions for opt	o packaging	2.09 years ?		•										
37 🕽	Design of electronics system	÷	38FF	1/3/11	12/4/12		De	sign of electro	nics system	2.09 years ?												
35 🕥	Sensors design		34	12/5/12	8/13/13					Senso	ors design 🗖	9 months										
40 🕽	ASICs prototypes design		33; 3	12/5/12	11/5/13					ASICs prototyp	es design 并	1 year	4									
16 🕲	Substrates prototype design		32; 3	1/2/13	12/3/13					Substrates protot	ype design 🛶	↓ L year	H									
39 🕥	Design of module mechanics		38; 4	3/27/13	2/25/14					Design of mod	lule mecharies	→ 1 year	10 -									
3 🔘	Finalization of detector layout		2	10/9/13	3/25/14					Finaliza	tion of detecto	or layout 6		-		$\boldsymbol{<}$						
45 🕥	ASICs prototypes fabrication		40	11/6/13	10/7/14					ASIC	s prototypes fa	abrication (1 year -	1			1					
36 🕲	Sensors proto procurement		35	12/4/13	8/12/14					Ser	nsors proto pr	ocurement 🖵	9 months									
17 🕥	Substrates prototypes fabrication		16	12/4/13	11/4/14					Substrate	es prototypes i	fabrication	1 year									
41 🕽	Fabrication of frames prototypes		39	2/26/14	1/27/15					Fabri	ication of fram	es prototypes	1 year									
27	Mechanical structures		3	3/26/14	3/17/20						Mechani	cal structures										
29 🕽	Mech. struct. design			3/26/14	7/12/16						Mech	. struct. design	yeas									
30 🕥	Mech. struct. proto construction		29	7/13/16	6/13/17								truct	o onstru	uction 1 yea	<u> </u>						
31 🕥	Mech. struct. proto validation		30	6/14/17	5/15/18									h. stru	ict. proto valida	tion 1 year						
28 🕲	Procurement of mechanical structures		31	5/16/18	3/17/20									Procu	rement of mec	hanical structur	es 2 years					
18 🕽	Sensors proto testing		36	8/13/14	1/27/15					4		nsor. o	te 6m									
42 🕲	ASICs prototypes testing		45	10/8/14	3/24/15							proto	testing 6	n -								
10 🕽	Substrates prototype testing		17; 4	11/5/14	4/21/15						Subs	strototy	pe testing	6 n								
25 🔘	Design of back-end systems		3	12/3/14	8/7/18						Pes	sign of back-e	nd systems 🕇	4 years	1	1						
43 🜑	Module design thermal validation		41	1/28/15	12/29			6	~		Modul	le design therr	mal validation	1 year	-							
44 🕲	Module design mechanical validation		41	1/28/15	10/6/15				-		Module d	lesign mechani	ical validation	9 months	1							
11 🕽	Financial planning, costbook		3	2/25/15	7/12/16							Financial plan	ning, costbook	→ 1.5 years								
13 🕽	Prototype system test		10; 1	4/22/15	10/6/15							Proto	otype system te	st → 6m –								
8 💭	Final ASICs design/preproduction		13	10/7/15	2/21/17							Final ASIC	s design/prepre	oduction [1	\$ years	2						
14 🕽	Final sensors design/preproduction		13	11/4/15	3/21/17							Final senso	rs design/prep	roduction [L.5 years							
5 🔘	Final substrates design/preproduction		13	12/30/15	2/21/17							Final substr	ates design/pr	eproduction	1.25 years							
6 💭	Final design module mechanics		13; 4	1/27/16	10							Fina	al design modu	le mechanics	→9 months	1						
12 🕽	Commercial actions (ASICs etc.)		11; 13	7/13/16	5/1								Commercial	l actions (ASICs	s etc.) 🛏 2 yea	rs						
7 🕽	Procurement of final frames prototypes		6	$\langle \circ \rangle$	P/5/	\sim						P	Procurement of	final frames pr	rototypes 1	year						
9 🙄	Validation of final ASICs		5; 8		8/8/1									Validation	n of final ASICs	- 6n						
15 🔘	Validation of final sensors			3/										Validation	of final sensors	6m -						
	Validation of final substrates design		5; 955.		9/5/17								Valida	ition of final su	ibstrates design							
4 🕹	Final system test		· · · ·	P/1/~	5/15/18										Final syst	em test	ionths			_		
19	Modules construction			5/16/18	2/10/21										Brocu	ment of conco				-		
23 🖌	Procurement of antical links		~	0/0/10	12/24										Procure	ement of optical		s				
21	Procurement of module mechanics			8/8/18	12/24										Procurement	of module mech		laars				
20 🖨	Procurement of hybrids		1	8/8/18	12/24										Pro	or module meen	(brids + 15 y	ears				
24 🖨	Modules assembly		2055	10/31/19	2/16/21											Modules		5 years	1			
26 🔘	Production of back-end systems		25	8/8/18	4/12/22										Production	of back-end svo	stems 4 ve	ars	1			
46 🔾	Procurement of services		23	10/2/19	6/9/20										1.00uction	Pi	rocurement of	services 9	months			
48 🗂	Subdetectors integration		24FF	6/10/20	5/11/21												Subdet	ectors integrat	ion 1 year	_ +		
50 🕥	Tracker integration		48FS+0	5/12/21	4/12/22													Tra	acker integratio	n 1 year		
47 🕲	Tracker commissioning		26: 5.	4/13/22	12/20														Tracker	commissioning	9 months	-
49 🕘	Tracker delivered to P5		47	12/21/22	12/21															Tracker delive	red to P5 4	5
D	ESY - Joint Instrumenta	tion	Sem	inar													Jun <u>e 8</u>	, 20 <u>12</u>	<u> </u>		41	

Simplified excel version

Simplified excel version

The phase-1 pixel detector is not the CMS ultimate pixel

Construction time is shorter, ~ 2 more years to converge on a design compared to the outer tracker

Discussions started; convergence on some basic concepts

- Aiming at a significantly smaller pixel size. Possibly as small as 30×100 μm²?
- 65 nm seems to be a good technology choice
 - ★ Strong technology node, likely to be available for very long
 - ★ Can squeeze 4× digital logic in same area wrt 130 nm
- Thin planar sensors with small pixels could be a robust baseline
- 3d silicon very appealing option with potentially excellent performance
- Diamonds the ultimate radiation hardness? Production and cost still an issue
 - ★ In any case low signal requires a chip with low threshold
- Several important system issues need to be addressed
 - ★ Synergies with Outer Tracker are necessary, but differences are relevant

Sketch of a 5-year development plan defined

- Should yield choice of sensor technology, and design of readout chip
- Interested groups gathering together

> A major question is, again, the trigger

• Local data reduction is not viable below 20 cm

• Regional readout is probably the way to go, if needed

> A major question is, again, the trigger

- Local data reduction is not viable below 20 cm
- Regional readout is probably the way to go, if needed

> A major question is, again, the trigger

- Local data reduction is not viable below 20 cm
- Regional readout is probably the way to go, if needed

> A major question is, again, the trigger

- Local data reduction is not viable below 20 cm
- Regional readout is probably the way to go, if needed

Summary and outlook

Designing an Outer Tracker with:

- Higher granularity
- Enhanced radiation hardness
- Improved tracking performance (i.e. lighter!)
- L1 Track finding capability
 - ★ Reconstruct tracks above ~ 2.5 GeV
 - **★** With ~ 1mm z_0 resolution

All the necessary R&D activities are ongoing

Still far from a fully defined concept

- But a lot of progress has been made already
- Encouraging indications that the goals could be met
- \odot Need to converge on an optimal design in the next ~ 2 years
- Draft schedule developed for delivery in LS3
- Phase 2 pixel project on the starting blocks
 - Development plan for the next 5 years being defined
- A lot of interesting and creative work: newcomers most welcome!

Backup

Layout properties

Number of hit modules

Geometry optimized for tracking: end-cap modules, no double-stacks,

Less layers to reduce material (improves p_{τ} resolution at low p)

Geometry optimized for track-trigger: long barrel, double-stacks, ... All pixellated modules (modelled as twice a PS module) * Assuming one GBT/module of 10x10 in the first layers

Surface, power, weight, ...

June 8, 2012

Material budget comparison

Performance comparison

