

The Materials Imaging and Dynamics Instrument at the European X-Ray Free-Electron Laser Facility (XFEL.EU)

May 25, 2012

Anders Madsen & Jörg Hallmann

anders.madsen@xfel.eu

XFEL The European XFEL. An underground facility

Anders Madsen, European XFEL,

XFEL The European XFEL. Also visible overground...

The European X-Ray Free-Electron Laser

EuropeanXFELThe XFEL.EU HQ

The European X-Ray Free-Electron Laser

XFEL The Experimental Hall

XFEL MID Tunnel (SASE 2), May 14

The European X-Ray Free-Electron Laser

XFEL XFEL.EU at the DESY-Bahrenfeld Site

The European X-Ray Free-Electron Laser

9

XTL linac tunnel entrance shaft 30m under ground

Anders Madsen, European XFEL,

XFEL The European XFEL

Facts and figures:

timeline

Construction phase (2009 - 2015) Operation phase (from 2015, users from 2016)

money

Construction cost: ~1.1 billion EUR (2005 prices)

accelerator

Superconducting 2.1 km long linac (-271°C) 101 accelerator cavities in Nb Electron energy: Up to 17.5 GeV 27000 pulses/s, >1nC per pulse (>1e10 e⁻)

European

2700 pulses in each train, 220 ns between pulses, 10 trains/sec (Pulse length <100 fs (C))

Photon flux ~ 10^{13} ph/pulse (> 10^{17} ph/s) Photon Energy: SASE up to 25 keV Almost fully transverse coherent (optical laser like) Δ E/E envelope ~ 1e-3 + fine structure \rightarrow temp. coherence not optical laser like)

Seeding offers the potential to get rid of the SASE noise

Keywords: Ultra-Fast, Ultra-Bright, and Ultra-Coherent

- □ Time-resolved X-ray scattering and pump probe experiments
- □ Time-resolved ultrafast spectroscopies
- Single-particle scattering and nano-crystallography
- Coherent diffraction imaging and speckle correlation spectroscopy
- Extreme states of matter

... all possible combinations + the things we can't imagine today

XFEL The Suite of Experimental Stations

SQS Small Quantum **Systems**

SCS Spectroscopy & **Coherent Scattering**

FXE Femtosecond X-ray **Experiments**

SPB Single Particle & **Biomolecules**

HED High Energy **Density Science**

MID Materials Imaging & **Dynamics**

13

More info: European XFEL Technical Design Report (TDR) www.xfel.eu

XFEL Materials Imaging and Dynamics Instrument

XFEL.EU TN-2011-008

CONCEPTUAL DESIGN REPORT

Scientific Instrument MID

November 2011

A. Madsen for Scientific Instrument MID (WP83) at the European XFEL

CDR online

MID Advisory and Review Team (ART):

G. Grübel, J. Hastings, H. F. Poulsen, I. K. Robinson, G. Ruocco, and T. Salditt

European X-Ray Free-Electron Laser Facility Ombi-

XFEL Materials Imaging and Dynamics Instrument

Full burst mode (4.5 MHz) for high rep. rate experiments

Special XPCS modes

every nth pulse logarithmic pulse pattern two pulses spaced by t, 220 ns > t > 1 ns

1 bunch/train (10 Hz) mode for alignment and special experiments

Bunch charge: 1 pC – 1 nC Photon energy: 5 – 25 keV, possibly > 25 keV Bandwidth: 1e-3, 1e-4, 1e-5,... Seeding: YES Beam spot on sample: 1 µm, 10 µm, 100 µm or more

Outline of the European XFEL Facility

Anders Madsen, European XFEL,

Anders Madsen, European XFEL,

XFEL MID Instrument Ingredients (work in progress...)

- Long SAXS tube, preferably with detector movable in-vacuum
- WAXS setup with up to 10 m detector-sample distance
- Windowless operation preferred
- Sample environment and positioning system (stationary targets, injector)
- Optical microscopes, photon, electron, ion(?) detectors
- Laser pump with tunable wavelength
- Large 2D X-ray detector with small pixels and 4.5 MHz operation
- SASE up to 25 keV, >25 keV an option ($E_c \sim 160$ keV, higher harmonic lasing)
- Flexible bandwidth: 1e-3, 1e-4, 1e-5. Self seeding much wanted!
- BPMs, spectral monitor, coherence monitor
- Focusing and beam tailoring by Be refractive lenses (CRL)
- X-ray split-delay line for time correlation experiments and pump-probe studies

XFEL MID Interfaces to other groups

Optical lasers

- several energy levels (µJ 100 mJ),
- pulse durations (10-20 fs, 100 fs, ps),
- frequency conversion
- synchronization (<10 fs)</p>

Sample environments & diagnostics

- fast exchange
- precision positioning and motion
- pulse-resolved diagnostics

Detectors

- 2D pixel detectors
- high rep. rate and small pixels

DAQ & data handling

- user-friendly, flexible environment
- data stream, storage, software and remote access

InnoSlab Design, ILT Aachen/Ampheos

XFEL Refractive Beryllium lenses for X-Ray focusing

Refractive in-line optics (CRL)

- Good choice for high energies
 - Stability
 - Easy alignment

Downsides:

- Chromatic focusing
- Small angle scattering (?)
- Efficiency at low energies

B. LENGELER, RXOPTICS and RWTH AACHEN UNIVERSITY

26

optical axis

B. Lengeler et al

XFEL The CRL chamber at ID10 (ESRF)

XFEL Numerical aperture

B. Lengeler

Parabola cut-off defines physical aperture R₀ (depends on R and Be thickness)

Absorption correction:

$$D_{eff} = 2R_0 \sqrt{\left[1 - \exp\left(-a_p\right)\right]/a_p}$$
$$a_p = \mu N z_0 = \frac{1}{2} \mu L_{st}$$

Currently best quality Be (minimum FeO impurities) is only available in 0.5 mm thick slabs Be parabolas up to R > 5 mm can now be fabricated with small abberations

European XFEL	European CRL1 Chamber (213 m from the source)										
		CRL1	rod 1 CR	L1 ro	d 2						
								P 1 0.	Parallel b F1 quality 5 mm thi	eam op / Berylliu ck, f = 2	tion um 13m
name	R (um)	N	2R ₂ (µm)	E(k	eV)	D." (ur	n)				
CRL1_11	5800	1	3406	5.0)	3245					
CRL1_12	4000	1	2820	6.0)	2743					
CRL1_13	2800	1	2366	7.2	2	2325					
CRL1_14	2000	1	2000	8.	5	1980					CRL1 rod 2
13	lenses ne	eded		ſ	name	R	(μm)	Ν	2R₀ (μm)	E(keV)	D _{eff} (μm)
Mounte	d in 2 x 4	slots	this		CRI	_1_21	2300	1	2145	8.0	2120
gives 25 p	gives 25 possible combinations				CRL	_1_22	2800	3	2366	12.5	2338
(incl. rod	1 and/or	rod 2			CRL	1 23	2000	3	2000	14.8	1982
-				I		_					

Anders Madsen, European XFEL,

XFEL CRL1 Chamber (213 m from the source)

Parallel beam energies by combinations of the two rods (Energy and effective diameter)

	CRL1_21	CRL1_22	CRL1_23	CRL1_24
CRL1_11	9.4 keV	13.5 keV	15.6 keV	24.7 keV
	2113 μm	2341 μm	1983 μm	996 μm
CRL1_12	10.0 keV	13.9 keV	16.0 keV	24.9 keV
	2117 μm	2343 μm	1984 μm	996 μm
CRL1_13	10.8 keV	14.4 keV	16.5 keV	25.2 keV
	2121 μm	2344 μm	1984 μm	996 μm
CRL1_14	11.7 keV	<mark>15.1</mark> keV	17.1 keV	25.6 keV
	1982 μm	1983 μm	1985 μm	996 μm

30

XFEL CRL1 Chamber (213 m from the source)

Comparison of beam size at 213 m (3 x FWHM, worst-case estimate from WP-73 CDR) and the effective lens diameter D_{eff}

XFEL Refocusing geometry (~ 10 μ m beam size)

Focus at the 726 m point, i.e. 513 m downstream of the CRL1 lens $1/f = 1/213 + 1/513 \rightarrow f = 150.5 \text{ m}$

CRL1 rod 1

name	R (μm)	Ν	2R ₀ (μm)	E(keV)	D _{eff} (μm)
CRL1_11	5800	1	3406	4.2	3245
CRL1_12	4000	1	2820	5.0	2743
CRL1_13	2800	1	2366	6.0	2325
CRL1_14	2000	1	2000	7.1	1980

					CRL1 rod 2	2
name	R (μm)	Ν	2R ₀ (μm)	E(keV)	D _{eff} (μm)]
CRL1_21	2300	1	2145	6.7	2120	
CRL1_22	2 2800	3	2366	10.4	2338	
CRL1_23	3 2000	3	2000	12.4	1982	
CRL1_24	500	2	1000	20.2	996	

XFEL Refocusing geometry (~ 10 μm beam size)

	CRL1_21	CRL1_22	CRL1_23	CRL1_24
CRL1_11	7.9 keV	11.3 keV	13.0 keV	20.6 keV
	2113 μm	2341 μm	1983 μm	996 μm
CRL1_12	8.4 keV	11.6 keV	13.3 keV	20.8 keV
	2117 μm	2343 μm	1984 μm	996 μm
CRL1_13	9.0 keV	12.1 keV	13.8 keV	21.1 keV
	2121 μm	2344 μm	1984 μm	996 μm
CRL1_14	9.8 keV	12.6 keV	14.3 keV	21.4 keV
	1982 μm	1983 μm	1985 μm	996 μm

XFEL Second CRL chamber

Similar to 1st CRL chamber

f = 25.5, 28, or 29 m depending on the status of CRL1 (refocusing, out, parallel beam)

27 lenses needed

Mounted in 2 x 4 slots this gives the possibility to focus/refocus 5-14 keV

Refocusing > 15 keV requires additional lenses (3rd chamber)

CRL2 rod 1			
name		Ν	2R ₀ (μm)
CRL2_11	2300	1	2145
CRL2_12	2000	1	2000
CRL2_13	2000	4	2000
CRL2_14	1000	7	1414

CRL2 rod 2	2		
name	R (μm)	Ν	2R ₀ (μm)
CRL2_21	2000	1	2000
CRL2_22	2000	2	2000
CRL2_23	2300	3	2145
CRL2_24	2000	8	2000

Advanced simulations of CRLs and the effect on the beam shape and wave front (in progress..)

L. Samoylova (XFEL.EU)

Thermal modeling in progress...

L Fast Acquisition of Diffraction Patterns

sequential mode for coherent scattering

XFEL Time resolution in XPCS or XPXP beyond 220 ns

Double pulse from split-delay or special machine mode (1.3 GHz RF frequency) ps and fs only available with split-delay of the photon pulses

C. Gutt et al, Optics Express 17, 55 (2009)

XFEL Experiments with Coherent X-Rays

Faster than 220 ns in XPCS or XPXP experiments ?

Possible by split-delay or by custom mode operation of the linac

Split-delay line (W. Roseker, Grübel group, DESY)

Grazing incidence mirrors: Split-delay line, FLASH style auto-correlator (Prof. Zacharias group, Uni. Münster)

fs – ps range within reach using split-delay techniques

Anders Madsen, European XFEL,

XFEL MID X-Ray Split-Delay Line (draft, in progress...)

Delay of simple pyramid (base L, height H) split-delay line

PLD (up-down) = $2h/\tan 2\theta x (1-\cos 2\theta) / \cos 2\theta$; $h \in [h_{min}; H]$ with $H=L/2^{*}\tan 2\theta$

Extra path length by lower CC mono (d: channel width)

Split-delay line 8 m upstream of the sample i.e. max beam separation 56 mm

XFEL Challenges and First Experience from LCLS

Particular challenges:

SASE fluctuations (temporal fine-structure) are problematic: Intensity fluctuations behind a mono (needed for high-q experiments) Fluctuations in spectral properties lead to fluctuations in longitudinal coherence length

Seeding of the SASE process and single-shot diagnostics (intensity, spectrum, coherence) required

XFEL Shot-to-Shot Intensity Fluctuations

LCLS simulations, S. Lee et al., Optics Express 20, 9790 (2012)

Si(111) $\Delta\lambda/\lambda \sim 1.4e-4$ Si(220) $\Delta\lambda/\lambda \sim 6.1e-5$ Si(511) $\Delta\lambda/\lambda \sim 1.1e-5$

About 15 spikes will pass through the Si(111) mono

Coherence time (and hence longitudinal coherence length) not well defined for Si(111) and Si(220)

European XFEL

L Shot-to-Shot Contrast Fluctuations in WAXS

43

Science with Seeded FEL beams

July 19-20 @ DESY

Organizers:

A. Madsen, M. Meyer, S. Molodtsov, T. Tschentscher

https://indico.desy.de/conferenceDisplay.py?ovw=True&confld=5665

XFEL Conclusion

- Lots of work ahead, we must be at the forefront scientifically and technically
- □ The MID instrument will offer plenty of new experimental possibilities (e.g. timeresolved scattering, speckle, pump-probe) that we only got a glimpse of so far
- Challenging development of enabling technologies (detectors, optics, diagnostics, lasers, data management and storage)
- First materials science experiments with hard X-ray lasers have taken place at LCLS. SACLA (Japan) also on-line now. XFEL.EU probably next in line (Dec. 2015)

Next MID milestone: Technical Design Report due in spring 2013

J. Hallmann, H. Sinn, L. Samoylova, T. Tschentscher and colleagues from XFEL.EU

Experiment L467 @ LCLS

Y. Chushkin, B. Ruta, G. Monaco (ESRF)

V. Giordano (Univ. Lyon 1)

E. Pineda (UPC, Barcelona)

M. Sikorski, A. Robert, and the XCS team (LCLS)