$\Delta q \ge \frac{1}{2} t$

Silicon Photomultipliers Properties and Perspectives

J. Ninković

Max Planck Institute for Physics, Semiconductor Laboratory, Munich, Germany

- Conventional Silicon Photomultiplier properties
- Digital SiPMs
- SiPMI concept Concept of Avalanche Diode Array with Bulk Integrated Quench Resistors for Single Photon Detection

Many future experiments will use >> 100,000 photon detectors

robust and stable easy to calibrate blue sensitive low cost (+ low peripheral costs) compact low power consumption insensitive to magnetic field

highest possible photon detection efficiency

. . .

Geiger mode:

Bias: (10%-20%) **ABOVE** breakdown voltage

Reverse Bias Voltage

Geiger-mode: it's a **BINARY** device!!

Count rate limited

Gain: "infinite" !!

Large standardized output signal high immunity against pickup

High sensitivity for single photons

Excellent timing even for single photo electrons (<<1ns)

Good temperature stability

Low sensitivity to bias voltage drifts

Devices operate in general < 100 V

Complete insensitive to magnetic fields

but it is a binary device ...

- Geometrical occupancy ~ 20-50%
- Photon Detection Efficiencies ~ 35%

SenSL

•SiPM Arrays ~ 1x4, 2x2,4x4

The gain is in the range of 10^5 to 10^7 . Single photoelectrons produce a signal of several mV on a 50 Ω load.

A simple amplifier is needed.

A breakdown can be triggered by an incoming photon or by any generation of free carriers within the detector.

Dark count rates of 100 kHz... 10MHz/mm²@25°C

Solution:

cooling (factor 2 reduction every 7-8°C) smaller electric field (lower gain) \rightarrow disadvantage lower PDE

Field-assisted generation (tunneling) depends on the design of the avalanche structure.

DR increases with overvoltage (tunneling) \rightarrow deep cooling doesn't help!

Jelena Ninkovic

mpi

Hamamatsu

1mm² device Operation @low overvoltage

Yokoyama et al. physics/0605241

Hot-Carrier Luminescence:

In an avalanche breakdown 10^5 carriers emit in average 1 photon with E > 1.14 eV. *A. Lacaita et al, IEEE TED (1993)*

When these photons travel to a neighboring cell they can trigger a breakdown there.

OCT becomes >1 for a Gain > few timesx 10^7 ... self-sustaining discharge

Excess Noise Factor becomes too large.

Optical isolation between pixels Operate at relative low gain \rightarrow disadvantage lower PDE

Optical cross talk suppression

Optical crosstalk, SiPM 1.4x1.4 mm2,dark noise

mpi

B.Dolgoshein,LIGHT06

Optical cross talk – Hamamatsu

Yokoyama et al. physics/0605241

mpi /halbleiterlabor

The time needed to recharge a cell after a breakdown depends mostly on the cell size (capacity) and the quenching resistor (RC).

Polysilicon resistors that are used up to now are temperature dependent. Therefore there is a strong dependence of the recovery time on the temperature.

Solution: Go to a metal alloy with high resistivity.

Recovery time

mpi

Avalanche breakdown process is fast and the signal amplitude is big. \Rightarrow very good timing properties even for single photons.

Fluctuations in the avalanche are mainly due to a lateral spreading (~10 ps) by diffusion and by the photons emitted in the avalanche.

A. Lacaita et al., Apl. Phys. Letters 62 (1992) A. Lacaita et al., Apl. Phys. Letters 57 (1990)

Hint: High overvoltage (high gain) may slightly improve the time resolution.

taken from B. Dolgoshein's presentation in Beaune 2002 (NIM A 504 (2003) 48)

Contribution from the laser and the electronics is 40 ps each. time resolution 100 ps FWHM

+ + mpi halbleiterlabor

Main limitations:

Geometrical occupancy of the Geiger diodes (aimed at 70%)

Reflection losses on the SiPM surface (<10% possible)

 λ_{min} determined by thickness and quality of surface implantation λ_{max} determined by thickness of active volume

Classical Quantum efficiency (~100%)

Breakdown Initiation Probability (~90%) Function of the electric field in the avalanche region

MEPhl

Pitch size $25 \mu m$

mpi

Photon Detection Efficiency

mpi

Blue/UV sensitivity

трі "Hhalbleiterlabor

Avalanche Efficiency (1 µm high field region)

Electrons have a higher probability to trigger an avalanche breakdown then holes

Solutions:

-Increase overvoltage

-Inverted structures

(prototypes produced at MEPhI/Pulsar & Hamamatsu)

PDE - Hamamatsu

[Figure 12] Photo detection efficiency (PDE)* vs. wavelength (measurement example) – (a) S10362-11-025U/-050U/-100U

Digital Silicon Photomultiplier Detector

- 4 identical sub-pixels with 2047 microcells each
- Microcell size $30\mu mx52\mu m$, 50% fill factor including electronics
- 1 bit inhibit memory in each microcell to enable/disable faulty diodes
- Active quench & recharge, on-chip memory and array controllers
- Integrated time-to-digital converter with σ = 8ps time resolution
- Variable trigger (1-4 photons) and energy (1-64 photons) thresholds
- Acquisition controller implemented in FPGA for flexibility and testing

SPAD Dark Count Rate Distribution

Total Sensor Dark Count Rate

Digital SiPM – Dark Count Rate

- 90 95% good diodes (dark count rate close to average)
- Typical dark count rate at 20°C and 3.3V excess voltage: ~150Hz / diode
 - Dark count rate drops to ~1-2Hz per diode at -40°C

PHILIPS

Temperature Dependence

Temperature dependent light output of LYSO:

¹ K. Burr et al, Nuclear Science Symposium Conference Record, N18-2, 2007

³ C. Kim, Nuclear Science Symposium Conference Record, M07-113, 2005

www.philips.com/digitalphotoncounting

Philips Digital Photon Counting, October 27th, 2009

mpi halbleiterlabor

² R. Mao et al, IEEE Transactions of Nuclear Science, vol. 55, 2008

PHILIPS

Summary

Digital SiPM operational

- Integrated electronics at cell level
- Integrated time-to-digital converter and photon counter
- Fully digital interface

Main benefits of the dSiPM

- Best possible timing due to first photon trigger
- · Low dark count rate, high yield
- No additional ASICs needed
- Low sensitivity to temperature variations
- Low power consumption
- Easy system integration

- Concept of Avalanche Diode Array with Bulk Integrated Quench Resistors for Single Photon Detection – SiPMI concept
- SiPMs developed @ MPI Semiconductor Laboratory Munich

Polysilicon Quench Resistors

Complex production step

Critical resistance range

influenced by: grain size, dopant segregation in grain boundaries, carrier trapping, barrier height

Rather complex process step and an absorber for light

M. Mohammad et al. 'Dopant segragation in polycrystalline silicon',

J. Appl. Physics, Nov., 1980

Simulations

Not a simple resistor problem

- bulk resistivity
- sensor thickness
- pitch size
- gap size

Influence

- carrier diffusion from top and bottom layer into the resistor bulk
- sideward depletion

→Extended device simulations performed and showed promising results for both small (25µm) and big (100µm) cells. + + + + mpi + halbleiterlabor

cylindrical approximation of hexagons

for quasi 3d simulation

Ninkovic et al., NIM A, 610, Issue 1

Recovery times by a factor 3 - 4 longer compared to optimally adjusted polysilicon resistor

Cross talk – bulk contribution

Less than 1 hole in the high field region

+ + + mpi halbleiterlabor

Hexagonal design pitch 150µm(50µm), isolation gap 40µm(15µm) → geomatrical fill factor 75%
Optical entrance window: 90% @400nm
Geiger efficiency : 90%

→ PDE: 61% (depends strongly on gap size)

Hexagonal design pitch 150µm, isolation gap 20µm → geomatrical fill factor 87%

Optical entrance window: 90% @400nm

Geiger efficiency : 90%

→ PDE: 70% (depends strongly on gap size)

Remarks on radiation hardness

Bulk damage -> increase of darkrate, and afterpulsing no difference to classical devices

Surface damage at Si/SiO₂ interface

can become significantly already in the krad range

- fixed positive oxide charge generation
 - -> flatband voltage shift, higher fields, edge breakdown
- generation of interface states (breaking of hydrogen bonds)

-> increased leakage current, amphoteric traps

Avoid depleted interfaces

Free carriers (high doping densitys) neutralize radiation induced oxide charges, and occupies interface states preventing them from SRH generation

Ideal situation:

Highly doped surface within the array no edges -> no lateral high field regions

(At the edge of the matrice is space enough

for guard structures)

Advantages:

- no need of polysilicon
- free entrance window for light, no metal necessary within the array
- coarse lithographic level
- simple technology
- inherent diffusion barrier against minorities in the bulk -> less optical cross talk
- hopefully better radiation hardness
- No Al lines needed for biasing of the cells and therefore smaller parasitic capacitance

Drawbacks:

- required depth for vertical resistors does not match wafer thickness
- wafer bonding is necessary for big pixel sizes
- significant changes of cell size requires change of the material
- vertical 'resistor' is a JFET -> parabolic IV -> longer recovery times

- Critical parameter
- Bulk doping variation of the top wafers measured on 10 diodes*/wafer (CV) (*test diodes without high energy implantation)

+ + + mpi halbleiterlabor

Standard deviation 1—2% of the mean value over the wafer

Homogeneous break down voltage

6 (10x10) arrays placed over 6mm distance

Gain linearity

Due to the non-optimized process sequence ~10MHz/1mm² @300K for 4V overbias

Normal operation up to 4.5V overbias @227K

 $@\Delta V > 4.5V$ non quench condition due to the small resistor value

Resistor behavior

+ + + mpi + halbleiterlabor

Resistor value designed for the room temperature operation

Summary

Conventional SiPMs:

- Are already an alternative to PMTs in many applications. T2K, the Tokai-to-Kamioka second generation long-baseline neutrino oscillation experiment uses 60000 MPPCs.
- Many of the parameters are already in the mature state.
- Radiation tolerance still has to be improved for many applications.
- Front side contact is not desirable for coupling to scintillators.

Digital SiPMs :

- demonstrator implemented in conventional CMOS process
- Flexible architecture allows to optimize sensor performance for application
- Micro-lenses could be used to effectively increase fill factor
- Low sensitivity to temperature variations
- Fault-tolerant, high yield and low power design
- Integrated data processing will enable future detector-on-chip concepts

SiMPI concept:

- Required flexibility for quench resistor adjustment comes with wafer bonding technique (for small pixels an epitaxial layer is also suitable)
- No polysilicon resistors, contacts and metal necessary at the entrance window
- Geometrical fill factor is given by the need of cross talk suppression only
- Very simple process, relaxed lithography requirements

Prototype production finished – quenching works, first measurements very promising

Thanks !