Development of radiation tolerant silicon detectors for the Super - LHC

... with strong focus on the results of the RD50 collaboration

Michael Moll (CERN/PH)
Outline

• Motivation to develop radiation harder detectors
 • Super-LHC and expected radiation levels at the Super-LHC
 • Radiation induced degradation of detector performance

• Radiation Damage in Silicon Detectors
 • Macroscopic damage (changes in detector properties)
 • Microscopic damage (crystal damage)

• Approaches to obtain radiation hard sensors
 • Material Engineering
 • Silicon materials – FZ, MCZ, DOFZ, EPI
 • Other semiconductors
 • Device Engineering
 • p-in-n, n-in-n and n-in-p sensors
 • 3D sensors and thin devices

• Silicon Sensors for the LHC upgrade and open questions
 • Collected Charge – Signal to Noise – Avalanche effects
 • Mixed irradiations

• Summary
LHC example: CMS inner tracker

CMS – “Currently the Most Silicon”
- **Micro Strip:**
 - ~ 214 m\(^2\) of silicon strip sensors, 11.4 million strips
- **Pixel:**
 - Inner 3 layers: silicon pixels (~1m\(^2\))
 - 66 million pixels (100x150\(\mu\)m)
 - Precision: \(\sigma(\rho \phi) \sim \sigma(z) \sim 15\mu m\)
 - Most challenging operating environments (LHC)

<table>
<thead>
<tr>
<th>Total weight</th>
<th>12500 t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>15m</td>
</tr>
<tr>
<td>Length</td>
<td>21.6m</td>
</tr>
<tr>
<td>Magnetic field</td>
<td>4 T</td>
</tr>
</tbody>
</table>
The challenge: Super LHC - visually

LHC nominal luminosity

SLHC luminosity ≈ 300-400 interactions/bx
Future Plans: Towards sLHC

The peak luminosity over time is shown with two lines:
- Red line: no PHASE II upgrade
- Blue line: including PHASE II upgrade

Key milestones:
- 2008: Linac4 + IR upgrade phase 1
- 2012: Collimation phase 2
- 2016: New injectors + IR upgrade phase 2

R. Garoby - LHCC - July 2008 - "Upgrade Plans for the CERN Accelerator Complex"
Future Plans: Towards sLHC

- Timeline shifting

Peak Luminosity \([10^{34} \text{ cm}^{-2} \text{s}^{-1}]\)

- R.Garoby - LHCC - July 2008 - "Upgrade Plans for the CERN Accelerator Complex"
- F.Zimmermann - Feb. 2009 - "SLHC Machine Plans"

- Planning 2009
Future Plans: Towards sLHC

- **Phase I upgrades:**
 - CMS: New Pixel Detector
 - 4 layers 4-16 cm + 6 disc
 - ATLAS: IBL – Insertable b-layer
 - (add layer at 3.5 cm)

- **Phase II upgrades:**
 - CMS: Tracker replacement
 - ATLAS: New ‘all silicon’ tracker
 - 4 pixel, 3 short & 2 long strip layers
 - (3.5 cm to 95 cm)

- **Timeline shifting**

SLHC (ATLAS) goal: 3000 fb\(^{-1}\) recorded

Integrated Luminosity [fb\(^{-1}\)]

Year

- no PHASE II
- normal ramp
Future Plans: Towards sLHC

2009
Start of LHC
Ramp up luminosity to few 10^{32} cm$^{-2}$s$^{-1}$
Energy of 3.5 TeV per beam (50%)
• 19. March 2010 – Beams accelerated to 3.5 TeV
• 30. March 2010 – First collisions at 2 x 3.5 TeV … run for 2 years

2012
Modify splices … go to 7 TeV
Run at 7 TeV per beam and ramp up luminosity to ~30% nominal

2016
New Linac 4 injector and full collimation scheme
Small upgrades to ATLAS and CMS
Ramp up luminosity even slightly beyond nominal

~2020
sLHC: New LHC focusing magnets, CRAB cavities, …
Major Upgrades of ATLAS and CMS
Collect data until > 3000 fb$^{-1}$

Planning 2010
(very uncertain at the moment)
new timeline in June 2010 ?

New Pixel
New Tracker

Use this value for further discussions
Radiation levels after 3000 fb$^{-1}$

- **Radiation hardness requirements (including safety factor of 2)**
 - 2×10^{16} neq/cm2 for the innermost pixel layers
 - 7×10^{14} neq/cm2 for the innermost strip layers

Radial distribution of sensors determined by Occupancy

- **Long Strips** (up to 4×10^{14} cm$^{-2}$)
- **Short Strips** (up to 10^{15} cm$^{-2}$)
- **Pixels** (up to 10^{16} cm$^{-2}$)

B-layer (R=3.7 cm): 2.5×10^{16} neq/cm$^2 = 1140$ Mrad
2nd Inner Pixel Layer (R=7 cm): 7.8×10^{15} neq/cm$^2 = 420$ Mrad
1st Outer Pixel Layer (R=11 cm): 3.6×10^{15} neq/cm$^2 = 207$ Mrad
Short strips (R=38 cm): 6.8×10^{14} neq/cm$^2 = 30$ Mrad
Long strips (R=85 cm): 3.2×10^{14} neq/cm$^2 = 8.4$ Mrad

Dominated by pion damage

Dominated by neutron damage

Signal degradation for LHC Silicon Sensors

Pixel sensors:
max. cumulated fluence for LHC

Strip sensors:
max. cumulated fluence for LHC

FZ Silicon
Strip and Pixel Sensors
- n-in-n (FZ), 285 μm, 600 V, 23 GeV p
- p-in-n (FZ), 300 μm, 500 V, 23 GeV p
- p-in-n (FZ), 300 μm, 500 V, neutrons

References:

Note: Measured partly under different conditions!
Lines to guide the eye (no modeling)!
Signal degradation for LHC Silicon Sensors

Strip sensors:
max. cumulated fluence for LHC and SLHC

Pixel sensors:
max. cumulated fluence for LHC and SLHC

FZ Silicon Strip and Pixel Sensors
- n-in-n (FZ), 285µm, 600V, 23 GeV p
- p-in-n (FZ), 300µm, 500V, 23 GeV p
- p-in-n (FZ), 300µm, 500V, neutrons

References:
[1] p/n-FZ, 300µm, (-30°C, 25ns), strip [Casse et al. 2008]

Note: Measured partly under different conditions! Lines to guide the eye (no modeling)!

SLHC will need more radiation tolerant tracking detector concepts!

Boundary conditions & other challenges:
Granularity, Powering, Cooling, Connectivity, Triggering, Low mass, Low cost!
Outline

- Motivation to develop radiation harder detectors
 - Super-LHC and expected radiation levels at the Super-LHC
 - Radiation induced degradation of detector performance

- Radiation Damage in Silicon Detectors
 - Macroscopic damage (changes in detector properties)
 - Microscopic damage (crystal damage)

- Approaches to obtain radiation hard sensors
 - Material Engineering
 - Silicon materials – FZ, MCZ, DOFZ, EPI
 - Other semiconductors
 - Device Engineering
 - p-in-n, n-in-n and n-in-p sensors
 - 3D sensors and thin devices

- Silicon Sensors for the upgrade and open questions
 - Collected Charge – Signal to Noise – Avalanche effects
 - Mixed irradiations

- Summary
Reminder: Reverse biased abrupt p⁺-n junction

Poisson’s equation

\[- \frac{d^2 \phi(x)}{dx^2} = \frac{q_0}{\varepsilon \varepsilon_0} \cdot N_{eff} \]

Positive space charge, \(N_{eff} = [P] \)
(ionized Phosphorus atoms)

Electrical charge density

Electrical field strength

Electron potential energy

\[V_{dep} = \frac{q_0}{\varepsilon \varepsilon_0} \cdot |N_{eff}| \cdot d^2 \]

depletion voltage

effective space charge density

Full charge collection only for \(V_B > V_{dep} \)!
Macroscopic Effects – I. Depletion Voltage

Change of Depletion Voltage $V_{\text{dep}} (N_{\text{eff}})$

with particle fluence:

- **Type inversion**: N_{eff} changes from positive to negative (Space Charge Sign Inversion)

- Short term: “Beneficial annealing”
- Long term: “Reverse annealing”
 - time constant depends on temperature:
 - ~ 500 years (-10°C)
 - ~ 500 days (20°C)
 - ~ 21 hours (60°C)
 - Consequence: Detectors must be cooled even when the experiment is not running!

with time (annealing):

- N_{eff} changes with annealing time at 60°C [min]

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -14-
Radiation Damage – II. Leakage Current

- Change of Leakage Current (after hadron irradiation)

Damage parameter α (slope in figure)

\[\alpha = \frac{\Delta I}{V \cdot \Phi_{\text{eq}}} \]

Leakage current per unit volume and particle fluence

- α is constant over several orders of fluence and independent of impurity concentration in Si

\Rightarrow can be used for fluence measurement

Leakage current decreasing in time (depending on temperature)

Strong temperature dependence

\[I \propto \exp\left(-\frac{E_g}{2k_B T}\right) \]

Consequence:

Cool detectors during operation!

Example: $I(-10^\circ\text{C}) \sim 1/16 I(20^\circ\text{C})$

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010
Deterioration of Charge Collection Efficiency (CCE) by trapping

Trapping is characterized by an effective trapping time τ_{eff} for electrons and holes:

$$Q_{e,h}(t) = Q_{0e,h} \exp\left(-\frac{1}{\tau_{\text{eff} e,h}} \cdot t\right)$$

where

$$\frac{1}{\tau_{\text{eff} e,h}} \propto N_{\text{defects}}$$

Increase of inverse trapping time $(1/\tau)$ with fluence

and change with time (annealing):

![Graph showing increase of inverse trapping time with fluence](image1)

![Graph showing change with time (annealing)](image2)

For 24 GeV/c proton irradiation, $\Phi_{\text{eq}} = 4.5 \times 10^{14} \text{ cm}^{-2}$

[M.Moll; Data: O.Krasel, PhD thesis 2004, Uni Dortmund]
Two general types of radiation damage to the detector materials:

- **Bulk (Crystal) damage due to Non Ionizing Energy Loss (NIEL)**
 - displacement damage, built up of crystal defects –

 I. Change of **effective doping concentration** (higher depletion voltage, under- depletion)

 II. Increase of **leakage current** (increase of shot noise, thermal runaway)

 III. Increase of **charge carrier trapping** (loss of charge)

- **Surface damage due to Ionizing Energy Loss (IEL)**
 - accumulation of positive in the oxide (SiO₂) and the Si/SiO₂ interface –
 - affects: interstrip capacitance (noise factor), breakdown behavior, …

Impact on detector performance and Charge Collection Efficiency
(depending on detector type and geometry and readout electronics!)

- Signal/noise ratio is the quantity to watch
 - **⇒ Sensors can fail from radiation damage!**

Influenced by impurities in Si – Defect Engineering is possible!

Same for all tested Silicon materials!

Can be optimized!
Outline

- Motivation to develop radiation harder detectors
 - Super-LHC and expected radiation levels at the Super-LHC
 - Radiation induced degradation of detector performance

- Radiation Damage in Silicon Detectors
 - Macroscopic damage (changes in detector properties)
 - Microscopic damage (crystal damage)

- Approaches to obtain radiation hard sensors
 - Material Engineering
 - Silicon materials – FZ, MCZ, DOFZ, EPI
 - Other semiconductors
 - Device Engineering
 - p-in-n, n-in-n and n-in-p sensors
 - 3D sensors and thin devices

- Silicon Sensors for the upgrade and open questions
 - Collected Charge – Signal to Noise – Avalanche effects
 - Mixed irradiations

- Summary
Impact on detector properties can be calculated if all defect parameters are known:

- $\sigma_{n,p}$: cross sections
- ΔE: ionization energy
- N_t: concentration

charged defects $\Rightarrow N_{eff}, V_{dep}$
e.g. donors in upper and acceptors in lower half of band gap

Trapping (e and h) \Rightarrow CCE
shallow defects do not contribute at room temperature due to fast detrapping

generation leakage current
Levels close to midgap most effective

Impact on Defects on Detector Properties

Shockley-Read-Hall statistics

E_C
+ donor

E_V
acceptor

electrons

holes

$\Rightarrow CCE$

shallow defects do not contribute at room temperature due to fast detrapping
Defect Characterization - Methods

Methods used by RD50 Collaboration
RD50-WODEAN project
guided by G. Lindstroem (HH):

- C-DLTS (Capacitance Deep Level Transient Spectroscopy)
- I-DLTS (Current Deep Level Transient Spectroscopy)
- TSC (Thermally Stimulated Currents)
- PITS (Photo Induced Transient Spectroscopy)
- FTIR (Fourier Transform Infrared Spectroscopy)
- RL (Recombination Lifetime Measurements)
- PC (Photo Conductivity Measurements)
- PL (Photo Luminescence)
- EPR (Electron Paramagnetic Resonance)
- TCT (Transient Charge Technique)
- CV/IV (Capacitance Voltage and Current Voltage Characteristics)

Further interesting methods:

- Positron Annihilation, TEM, TSCAP,
Correlation: Microscopic and Macroscopic data

- TSC and CV measurements (Isothermal annealing after 2×10^{14} n/cm2)

TSC-results (EPI-ST)

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>TSC-signal (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>125</td>
<td>30</td>
</tr>
<tr>
<td>150</td>
<td>40</td>
</tr>
<tr>
<td>175</td>
<td>50</td>
</tr>
<tr>
<td>200</td>
<td>50</td>
</tr>
</tbody>
</table>

- E(30)K
- V$_O$
- H(140)K
- H(116)K
- V$_e$ ±?
- H(152)K

Comparison to ΔN_{eff}

[Alexandra Junkes, Hamburg University, RD50 Workshop June 2009]
Summary – defects with strong impact on the device properties at operating temperature

Point defects

- \(E_{i}^{BD} = E_c - 0.225 \) eV
- \(\sigma_n^{BD} = 2.3 \cdot 10^{-14} \text{ cm}^2 \)
- \(E_{i}^{I} = E_c - 0.545 \) eV
 - \(\sigma_n^{I} = 2.3 \cdot 10^{-14} \text{ cm}^2 \)
 - \(\sigma_p^{I} = 2.3 \cdot 10^{-14} \text{ cm}^2 \)

Cluster related centers

- \(E_{i}^{116K} = E_v + 0.33 \text{ eV} \)
- \(\sigma_p^{116K} = 4 \cdot 10^{-14} \text{ cm}^2 \)
- \(E_{i}^{140K} = E_v + 0.36 \text{ eV} \)
- \(\sigma_p^{140K} = 2.5 \cdot 10^{-15} \text{ cm}^2 \)
- \(E_{i}^{152K} = E_v + 0.42 \text{ eV} \)
- \(\sigma_p^{152K} = 2.3 \cdot 10^{-14} \text{ cm}^2 \)
- \(E_{i}^{30K} = E_c - 0.1 \) eV
- \(\sigma_n^{30K} = 2.3 \cdot 10^{-14} \text{ cm}^2 \)

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -22-
Outline

• Motivation to develop radiation harder detectors
 • Super-LHC and expected radiation levels at the Super-LHC
 • Radiation induced degradation of detector performance

• Radiation Damage in Silicon Detectors
 • Macroscopic damage (changes in detector properties)
 • Microscopic damage (crystal damage)

• Approaches to obtain radiation hard sensors
 • Material Engineering
 • Silicon materials – FZ, MCZ, DOFZ, EPI
 • Other semiconductors
 • Device Engineering
 • p-in-n, n-in-n and n-in-p sensors
 • 3D sensors and thin devices

• Silicon Sensors for the upgrade and open questions
 • Collected Charge – Signal to Noise – Avalanche effects
 • Mixed irradiations

• Summary
Silicon Growth Processes

- **Floating Zone Silicon (FZ)**
 - Poly silicon
 - RF Heating coil
 - Single crystal silicon
 - Float Zone Growth

- **Czochralski Silicon (CZ)**
 - The growth method used by the IC industry.
 - Difficult to produce very high resistivity

 ![Czochralski Growth](image)

- **Epitaxial Silicon (EPI)**
 - Basically all silicon tracking detectors made out of FZ silicon
 - Some pixel sensors out of DOFZ Diffusion Oxygenated FZ silicon
 - Chemical-Vapor Deposition (CVD) of Si
 - up to 150 μm thick layers produced
 - growth rate about 1μm/min
Silicon Materials under Investigation by RD50

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness [μm]</th>
<th>Symbol</th>
<th>ρ (Ωcm)</th>
<th>$[O_i]$ (cm⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard FZ (n- and p-type)</td>
<td>50, 100, 150, 300</td>
<td>FZ</td>
<td>1–30×10³</td>
<td>< 5×10¹⁶</td>
</tr>
<tr>
<td>Diffusion oxygenated FZ (n- and p-type)</td>
<td>300</td>
<td>DOFZ</td>
<td>1–7×10³</td>
<td>~ 1–2×10¹⁷</td>
</tr>
<tr>
<td>Magnetic Czochralski Si, Okmetic, Finland (n- and p-type)</td>
<td>100, 300</td>
<td>MCz</td>
<td>~ 1×10³</td>
<td>~ 5×10¹⁷</td>
</tr>
<tr>
<td>Czochralski Si, Sumitomo, Japan (n-type)</td>
<td>300</td>
<td>Cz</td>
<td>~ 1×10³</td>
<td>~ 8–9×10¹⁷</td>
</tr>
<tr>
<td>Epitaxial layers on Cz-substrates, ITME, Poland (n- and p-type)</td>
<td>25, 50, 75, 100, 150</td>
<td>EPI</td>
<td>50 – 100</td>
<td>< 1×10¹⁷</td>
</tr>
<tr>
<td>Diffusion oxyg. Epitaxial layers on CZ</td>
<td>75</td>
<td>EPI–DO</td>
<td>50 – 100</td>
<td>~ 7×10¹⁷</td>
</tr>
</tbody>
</table>

- **DOFZ silicon** - Enriched with oxygen on wafer level, inhomogeneous distribution of oxygen
- **CZ/MCZ silicon** - high Oi (oxygen) and O_{2i} (oxygen dimer) concentration (homogeneous)
 - formation of shallow Thermal Donors possible
- **Epi silicon** - high O₁, O_{2i} content due to out-diffusion from the CZ substrate (inhomogeneous)
 - thin layers: high doping possible (low starting resistivity)
- **Epi-Do silicon** - as EPI, however additional O₁ diffused reaching homogeneous O₁ content
FZ, DOFZ, Cz and MCz Silicon

- Strong differences in V_{dep}
 - Standard FZ silicon
 - Oxygenated FZ (DOFZ)
 - CZ silicon and MCZ silicon

- Strong differences in internal electric field shape
 (space charge sign inversion, no inversion, double junction effects,…)

- Different impact on pad and strip detector operation!
 - e.g.: a lower V_{dep} or $|N_{\text{eff}}|$ does not necessarily correspond to a higher CCE for strip detectors (see later!)

Common to all materials (after hadron irradiation, not after γ irradiation):
- reverse current increase
- increase of trapping (electrons and holes) within $\sim 20\%$
Correlation: Microscopic and Macroscopic data

- Epitaxial silicon irradiated with 23 GeV protons vs reactor neutrons

Development of N_{eff} for EPI-DO after neutron and proton irradiation

TSC results after neutron and proton irradiation

- SCSI after neutrons but not after protons
- donor generation enhanced after proton irradiation
- microscopic defects explain macroscopic effect at low Φ_{eq}

[I. Pintilie, et al., to be published.]

[A.Junkes, Hamburg University, RD50 Workshop June 2009]
Mixed irradiations – Change of N_{eff}

- Exposure of FZ & MCZ silicon sensors to ‘mixed’ irradiations
 - First step: Irradiation with protons or pions
 - Second step: Irradiation with neutrons

FZ: Accumulation of damage

MCZ: Compensation of damage

Why is proton and neutron damage different?

- Particle $\rightarrow S_i$ $\rightarrow E_K > 25$ eV
- $E_K > 5$ keV point defects and clusters of defects

Simulation:
Initial distribution of vacancies in $(1 \mu m)^3$ after 10^{14} particles/cm2 [Mika Huhtinen NIMA 491(2002) 194]

- 10 MeV protons, 36824 vacancies
- 24 GeV/c protons, 4145 vacancies
- 1 MeV neutrons, 8870 vacancies

- A ‘simplified’ explanation for the ‘compensation effects’
 - Defect clusters produce predominantly negative space charge
 - Point defects produce predominantly positive space charge (in ‘oxygen rich’ silicon)

For the experts: Note the NIEL violation
Advantage of non-inverting material
p-in-n detectors (schematic figures!)

Fully depleted detector
(non – irradiated):

- p⁺ strips
- Hole drift
- Electron drift
- n⁺ layer
- Traversing particle
Advantage of non-inverting material

p-in-n detectors (schematic figures!)

Fully depleted detector (non – irradiated):

- **Inverted to “p-type”, under-depleted:**
 - Charge spread – degraded resolution
 - Charge loss – reduced CCE

- **Non-inverted, under-depleted:**
 - Limited loss in CCE
 - Less degradation with under-depletion

Be careful, this is a very schematic explanation, reality is more complex!
Device engineering
p-in-n versus n-in-p (or n-in-n) detectors

n-type silicon after high fluences:
(type inverted)

- **p⁺on-n**
 - **p⁺strips**
 - Undepleted region
 - **Electron drift**
 - **Hole drift**
 - **n⁺layer**
 - Traversing particle

p-on-n silicon, under-depleted:
- Charge spread – degraded resolution
- Charge loss – reduced CCE

n⁺on-p
- **n⁺strips**
- Undepleted region
- Traversing particle

p-type silicon after high fluences:
(still p-type)

- **n⁺on-p**
 - **n⁺strips**
 - Active region
 - **Hole drift**
 - **Electron drift**
 - **p⁺layer**

n-on-p silicon, under-depleted:
- Limited loss in CCE
- Less degradation with under-depletion
- Collect electrons (3 x faster than holes)

Comments:
- Instead of *n-on-p* also *n-on-n* devices could be used
Reality is more complex: *Double junctions*

- Dominant junction close to n+ readout strip for FZ n-in-p
- For MCZ p-in-n even more complex fields have been reported:
 - no “type inversion” (SCSI) = dominant field remains at p implant
 - “equal double junctions” with almost symmetrical fields on both sides
FZ n-in-p microstrip detectors (n, p, π – irrad)

- **n-in-p microstrip p-type FZ detectors** (Micron, 280 or 300µm thick, 80µm pitch, 18µm implant)
- **Detectors read-out with 40MHz** (SCT 128A)

[A.Affolder, Liverpool, RD50 Workshop, June 2009]

- **CCE:** ~7300e (~30%) after ~1×10^{16}cm^{-2} 800V
- **n-in-p sensors are strongly considered for ATLAS upgrade** (previously p-in-n used)
FZ n-in-p microstrip detectors (n, p, π – irrad)

- **n-in-p microstrip p-type FZ detectors** (Micron, 280 or 300μm thick, 80μm pitch, 18μm implant)
- **Detectors read-out with 40MHz** (SCT 128A)

Signal (10^3 electrons) vs **Fluence (10^{14} n_{eq}/cm^2)**

CCE: ~7300e (~30%)
after ~ 1×10^{16}cm^{-2} 800V

n-in-p sensors are strongly considered for **ATLAS upgrade** (previously p-in-n used)

no reverse annealing in CCE measurements for neutron and proton irradiated detectors
Why do planar silicon sensors with n-strip readout give such high signals after high levels (>10^{15} \text{ cm}^{-2} \text{ p/cm}^2) of irradiation?

- Extrapolation of charge trapping parameters obtained at lower fluences would predict much lower signal!
- Assumption: ‘Charge multiplication effects’ as even CCE > 1 was observed

FZ Silicon Strip Sensors

- n-in-p (FZ), 300\,\mu m, 500V, 23GeV p [1]
- n-in-p (FZ), 300\,\mu m, 500V, neutrons [1,2]
- n-in-p (FZ), 300\,\mu m, 500V, 26MeV p [1]
- n-in-p (FZ), 300\,\mu m, 800V, 23GeV p [1]
- n-in-p (FZ), 300\,\mu m, 800V, neutrons [1,2]
- n-in-p (FZ), 300\,\mu m, 800V, 26MeV p [1]
- n-in-p (FZ), 300\,\mu m, 1700V, neutrons [2]
- p-in-n (FZ), 300\,\mu m, 500V, 23GeV p [1]
- p-in-n (FZ), 300\,\mu m, 500V, neutrons [1]

References:
(p/n-FZ, 300\,\mu m, (-30^\circ\text{C}, 25ns)
(p-FZ, 300\,\mu m, -20^\circ\text{C} to -40^\circ\text{C}, 25ns)

Which voltage can be applied?
Charge Multiplication – Epi Diodes

- Epi diodes, 75 and 150 μm thick
- Measured trapping probability found to be proportional to fluence and consistent with values extracted in FZ
- Multiplication effect stronger for 75 μm diodes
- Smaller penetration depth (670 nm laser) → stronger charge multiplication

[J.Lange et al., 14th RD50 Workshop, June 2009]
Annealing studies on strip sensors

[I. Mandic, 15th RD50 Workshop, Nov. 09 – Measured on HPK ATLAS sensors]

- p-type strip sensor; $\Phi_{eq} = 5 \times 10^{15} \text{ cm}^{-2}$ (neutrons) [ATLAS – HPK – sensors]

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010
Further annealing studies
[G.Casse, Trento Workshop, Feb.2010 – Measured on HPK ATLAS sensors]

- p-type strip sensor; [ATLAS – HPK]
- $\Phi_{eq} = 1 \times 10^{15} \text{n}_{eq} \text{cm}^{-2}$ (26MeV protons)

Stable operation of n-in-p sensors without cooling during maintenance periods seems feasible
Still long way to fully understand high voltage operation of highly irradiated sensors
3D detector - concept

- **“3D” electrodes:**
 - narrow columns along detector thickness,
 - diameter: 10μm, distance: 50 - 100μm

- **Lateral depletion:**
 - lower depletion voltage needed
 - thicker detectors possible
 - fast signal
 - radiation hard

Not discussed here in detail:
Seminar on 9. April dedicated entirely to 3D sensors
Example: Testbeam of 3D-DDTC

- DDTC – Double sided double type column

- Testbeam data – Example: efficiency map
 [M.Koehler, Freiburg Uni, RD50 Workshop June 09]

- Processing of 3D sensors is challenging, but many good devices with reasonable production yield produced.

- Competing e.g. for ATLAS IBL pixel sensors

40V applied
~98% efficiency
3D-DDTC – Study after irradiation

- DDTC sensors irradiated with 26 MeV protons

- Signal scales with leakage current

- Avalanche effects in 3D sensors

- Signal to Noise

[M.Koehler, Trento Workshop, Feb. 2009]
\[1 \times 10^{25} \text{ n}_{\text{eq}} /\text{cm}^2\]
Use of other semiconductor materials?

<table>
<thead>
<tr>
<th>Property</th>
<th>Diamond</th>
<th>GaN</th>
<th>4H SiC</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_g [eV]</td>
<td>5.5</td>
<td>3.39</td>
<td>3.3</td>
<td>1.12</td>
</tr>
<tr>
<td>$E_{\text{breakdown}}$ [V/cm]</td>
<td>10^7</td>
<td>$4\cdot10^6$</td>
<td>$2.2\cdot10^6$</td>
<td>$3\cdot10^5$</td>
</tr>
<tr>
<td>μ_e [cm2/Vs]</td>
<td>1800</td>
<td>1000</td>
<td>800</td>
<td>1450</td>
</tr>
<tr>
<td>μ_h [cm2/Vs]</td>
<td>1200</td>
<td>30</td>
<td>115</td>
<td>450</td>
</tr>
<tr>
<td>v_{sat} [cm/s]</td>
<td>$2.2\cdot10^7$</td>
<td>-</td>
<td>$2\cdot10^7$</td>
<td>$0.8\cdot10^7$</td>
</tr>
<tr>
<td>e-h energy [eV]</td>
<td>13</td>
<td>8.9</td>
<td>7.6-8.4</td>
<td>3.6</td>
</tr>
<tr>
<td>e-h pairs/X$_0$</td>
<td>4.4</td>
<td>~2-3</td>
<td>4.5</td>
<td>10.1</td>
</tr>
</tbody>
</table>

- **Diamond**: wider bandgap
 ⇒ lower leakage current
 ⇒ less cooling needed

- **Signal produced by m.i.p:**
 Diamond 36 e/μm
 Si 89 e/μm
 ⇒ Si gives more charge than diamond

- **GaAs, SiC and GaN**:
 ⇒ strong radiation damage observed
 ⇒ no potential material for sLHC detectors
 (judging on the investigated material)

- **Diamond (RD42)**:
 ⇒ good radiation tolerance *(see later)*
 ⇒ already used in LHC beam condition monitoring systems
 ⇒ considered as potential detector material for sLHC pixel sensors

- poly-CVD Diamond
 −16 chip ATLAS pixel module

- single crystal CVD Diamond of few cm2

Diamond sensors are heavily used in LHC Experiments for Beam Monitoring
Are diamond sensor radiation hard?

Most published results on 23 GeV protons

70 MeV protons 3 times more damaging than 23 GeV protons

25 MeV protons seem to be even more damaging (Preliminary: RD42 about to cross check the data shown to the left)

In line with NIEL calc. for Diamond

Outline

- Motivation to develop radiation harder detectors
 - Super-LHC and expected radiation levels at the Super-LHC
 - Radiation induced degradation of detector performance

- Radiation Damage in Silicon Detectors
 - Macroscopic damage (changes in detector properties)
 - Microscopic damage (crystal damage)

- Approaches to obtain radiation hard sensors
 - Material Engineering
 - Silicon materials – FZ, MCZ, DOFZ, EPI
 - Other semiconductors
 - Device Engineering
 - p-in-n, n-in-n and n-in-p sensors
 - 3D sensors and thin devices

- Silicon Sensors for the LHC upgrade
 - Collected Charge – Signal to Noise – Avalanche effects
 - Mixed irradiations

- Summary
Silicon materials for Tracking Sensors

- Signal comparison for various Silicon sensors

![Graph showing signal comparison for various Silicon sensors](image)

Silicon Sensors
- p-in-n (FZ), 300μm, 500V, 23GeV p [1]
- p-in-n (FZ), 300μm, 500V, neutrons [1]

Other materials

References:

[5] 3D, double sided, 250μm columns, 300μm substrate [Pennicard 2007]

Note: Measured partly under different conditions!
Lines to guide the eye (no modeling)!
Silicon materials for Tracking Sensors

- Signal comparison for various Silicon sensors

![Graph showing signal comparison for various Silicon sensors](image)

Silicon Sensors
- p-in-n (EPI), 150 µm [7,8]
- p-in-n (EPI), 75µm [6]
- n-in-p (FZ), 300µm, 500V, 23GeV p [1]
- n-in-p (FZ), 300µm, 500V, neutrons [1]
- n-in-p (FZ), 300µm, 500V, 26MeV p [1]
- n-in-p (FZ), 300µm, 800V, 23GeV p [1]
- n-in-p (FZ), 300µm, 800V, neutrons [1]
- n-in-p (FZ), 300µm, 800V, 26MeV p [1]
- p-in-n (FZ), 300µm, 500V, 23GeV p [1]
- p-in-n (FZ), 300µm, 500V, neutrons [1]

Other materials
- SiC, n-type, 55 µm, 900V, neutrons [3]

References:
[5] 3D, double sided, 250µm columns, 900µm substrate [Pennicard 2007]

Note: Measured partly under different conditions!
Lines to guide the eye (no modeling)!
Silicon materials for Tracking Sensors

- Signal comparison for various Silicon sensors

![Graph showing signal comparison for various Silicon sensors.](image)

Silicon Sensors
- p-in-n (EPI), 150 μm [7,8]
- p-in-n (EPI), 75 μm [6]
- n-in-p (FZ), 300 μm, 500V, 23GeV p [1]
- n-in-p (FZ), 300 μm, 500V, neutrons [1]
- n-in-p (FZ), 300 μm, 500V, 26MeV p [1]
- n-in-p (FZ), 300 μm, 800V, 23GeV p [1]
- n-in-p (FZ), 300 μm, 800V, neutrons [1]
- n-in-p (FZ), 300 μm, 800V, 26MeV p [1]
- p-in-n (FZ), 300 μm, 500V, 23GeV p [1]
- p-in-n (FZ), 300 μm, 500V, neutrons [1]

Other materials
- SiC, n-type, 55 μm, 900V, neutrons [3]

References:
1. p/n-FZ, 300 μm, (-30° C, 25 ns), strip [Casse 2008]
2. p-FZ, 300 μm, (-40° C, 25 ns), strip [Mandic 2008]
3. n-SiC, 55 μm, 2 μs, pad [Moscatelli 2006]
4. CVD Diamond, scaled to 500 μm, 23 GeV p, strip [Adam et al. 2006, RD42]
5. 3D, double sided, 250 μm columns, 300 μm substrate [Pennicard 2007]
6. n-EPI, 75 μm, (-30° C, 25 ns), pad [Kramberger 2006]
7. n-EPI, 150 μm, (-30° C, 25 ns), pad [Kramberger 2006]
8. n-EPI, 150 μm, (-30° C, 25 ns), strip [Messineo 2007]

Note: Fluctuations normalized with damage factor for Silicon (0.62)

- LHC SLHC
- highest fluence for strip detectors in LHC: The used p-in-n technology is sufficient

Note: Measured partly under different conditions!
Lines to guide the eye (no modeling)!

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010
Silicon materials for Tracking Sensors

- Signal comparison for various Silicon sensors

- All sensors suffer from radiation damage
- Presently three options for innermost pixel layers under investigation:
 - 3-D silicon sensors (decoupling drift distance from active depth)
 - Diamond sensors
 - Silicon planar sensors

Silicon Sensors
- p-in-n (EPI), 150 μm [7,8]
- p-in-n (EPI), 75μm [6]
- n-in-p (FZ), 300μm, 500V, 23GeV p [1]
- n-in-p (FZ), 300μm, 500V, neutrons [1]
- n-in-p (FZ), 300μm, 500V, 26MeV p [1]
- n-in-p (FZ), 300μm, 800V, 23GeV p [1]
- n-in-p (FZ), 300μm, 800V, neutrons [1]
- n-in-p (FZ), 300μm, 800V, 26MeV p [1]
- p-in-n (FZ), 300μm, 500V, 23GeV p [1]
- p-in-n (FZ), 300μm, 500V, neutrons [1]
- Double-sided 3D, 250 μm, simulation! [5]

Other materials
- SiC, n-type, 55 μm, 900V, neutrons [3]
- Diamond (pCVD), 500 μm [4] (RD42)

References:
[5] 3D, double sided, 250μm columns, 300μm substrate [Pennicard 2007]

Beware:
Signal shown and not S/N!

Higher Voltage leads to charge multiplication

Note: Measured partly under different conditions!
Lines to guide the eye (no modeling)!
Ongoing Work / Open Questions
- Performance of MCZ silicon in mixed fields -

- Is MCZ silicon (n- and p-type) an option for SLHC detectors?
 - Protons induce predominantly defects that are positively charged
 - Neutrons induce predominantly defects that are negatively charged
 - Mixed Fields: Compensation?

- Mixed irradiations:
 - (a) $\Phi_{eq} = 5 \times 10^{14}$ neutrons
 - (b) $\Phi_{eq} = 5 \times 10^{14}$ protons

- FZ (n-in-n)
- MCZ (n-in-n)

[T.Affolder et al. RD50 Workshop, Nov.2008]
Ongoing Work / Open Questions
- Performance of MCZ silicon in mixed fields -

- Is MCZ silicon (n- and p-type) an option for SLHC detectors?
 - Protons induce predominantly defects that are positively charged
 - Neutrons induce predominantly defects that are negatively charged
 - Mixed Fields: Compensation?

- Mixed irradiations:
 - (a) $\Phi_{eq} = 5 \times 10^{14}$ neutrons
 - (b) $\Phi_{eq} = 5 \times 10^{14}$ protons

- FZ (n-in-n)
 Mixed Irradiation:
 Damage additive!

- MCZ (n-in-n)
Ongoing Work / Open Questions
- Performance of MCZ silicon in mixed fields -

● Is MCZ silicon (n- and p-type) an option for SLHC detectors?
 ● Protons induce predominantly defects that are positively charged
 ● Neutrons induce predominantly defects that are negatively charged
 ● Mixed Fields: Compensation?

● Mixed irradiations:
 ● (a) $\Phi_{eq} = 5 \times 10^{14}$ neutrons
 ● (b) $\Phi_{eq} = 5 \times 10^{14}$ protons

● FZ (n-in-n)
 Mixed Irradiation:
 Damage additive!

● MCZ (n-in-n)
 Mixed Irradiation:
 Proton damage
 “compensates” part of neutron damage (N_{eff})

More charge collected at 500V after additional irradiation!!!
Summary – Radiation Damage

- **Radiation Damage in Silicon Detectors**
 - Change of **Depletion Voltage** (internal electric field, “type inversion”, reverse annealing, …) (can be influenced by defect engineering!)
 - Increase of **Leakage Current** (same for all silicon materials)
 - Increase of **Charge Trapping** (same for all silicon materials)

 Signal to Noise ratio is quantity to watch (material + geometry + electronics)

- **Microscopic defects & Defect Engineering**
 - Good understanding of damage after γ-irradiation (point defects)
 - Defects after hadron damage still to be better understood (cluster defects) although enormous progress in last 5 years a big question remains: Which are the defects responsible for the charge trapping?

- **Approaches to obtain radiation tolerant devices:**
 - **Material Engineering:** explore and develop new silicon materials
 - **Device Engineering:** 3D, thin sensors, n-in-p, n-in-n, …

⇒ **To obtain ultra radiation hard sensors a combination of material and device engineering approaches depending on radiation environment, application and available readout electronics will be best solution**
Summary – Detectors for SLHC

- **At fluences up to** 10^{15}cm$^{-2}$ (outer layers of SLHC detector):
 - The change of the depletion voltage and the large area to be covered by detectors are major problems.
 - **MCZ silicon detectors**: n-MCZ show good performance in mixed fields due to compensation of charged hadron damage and neutron damage (N_{eff} compensation) (more work needed)
 - **p-type silicon** microstrip detectors show very encouraging results:
 - CCE ≈ 6500 e; $\Phi_{\text{eq}} = 4 \times 10^{15}$ cm$^{-2}$, 300μm, immunity against reverse annealing!
 - This is presently the “most considered option” for the ATLAS SCT upgrade

- **At fluences >** 10^{15}cm$^{-2}$ (Inner SLHC layers or innermost upgraded LHC pixel)
 - The active thickness of any silicon material is significantly reduced due to trapping.
 - Collection of electrons at electrodes essential: Use n-in-p or n-in-n detectors!
 - **Recent results show that planar silicon sensors might still give sufficient signal**, (still some interest in epitaxial silicon and thin sensor options)
 - **3D detectors**: looks promising, drawback: technology has to be optimized!
 - Many collaborations and sensor producers working on this.
 - **Diamond** has become an interesting option (*Higher damage due to low energy protons?*)

- Questions to be answered:
 - a) Can we profit from the avalanche effects and control them?
 - b) Can we profit from MCZ (mixed field operation?)
Acknowledgements

- Some material taken from the following summary talks:
 - RD50 presentations on conferences: http://www.cern.ch/rd50/
 - Nigel Hessey: Eiroforum RADHARD 2010 Workshop, Lisbon 16-18 March 2010 (Path to upgrade)
 - Anthony Affolder: Presentations on the RD50 Workshop in June 2009 (sATLAS fluence levels)
 - Frank Hartmann: Presentation at the VCI conference in February 2010 (Diamond results)
 - … most references to particular works given on slides.

Further information about RD50 activities: http://cern.ch/rd50/
Further R&D: RD42, RD39, ATLAS & CMS detector upgrade meetings, ATLAS IBL

… or go to DESY bldg. 67b …

…. where you will find the

Particle Physics & Detector Development Group

.. and more expertise in this research field than I can offer.