

Joint Instrumentation Seminar of the Particle Physics and Photon Science communities at DESY, Hamburg University and XFEL - 26 March 2010 -

Development of radiation tolerant silicon detectors for the Super - LHC

... with strong focus on the results of the RD50 collaboration

Michael Moll (CERN/PH)

Outline

Motivation to develop radiation harder detectors

- Super-LHC and expected radiation levels at the Super-LHC
- Radiation induced degradation of detector performance

Radiation Damage in Silicon Detectors

- Macroscopic damage (changes in detector properties)
- Microscopic damage (crystal damage)

• Approaches to obtain radiation hard sensors

- Material Engineering
 - Silicon materials FZ, MCZ, DOFZ, EPI
 - Other semiconductors
- Device Engineering
 - p-in-n, n-in-n and n-in-p sensors
 - 3D sensors and thin devices

• Silicon Sensors for the LHC upgrade and open questions

- Collected Charge Signal to Noise Avalanche effects
- Mixed irradiations

LHC example: CMS inner tracker

30

cn

- **CMS** "Currently the Most Silicon"
 - Micro Strip:
 - $\sim 214 \text{ m}^2$ of silicon strip sensors, 11.4 million strips
 - Pixel:
 - Inner 3 layers: silicon pixels (~ 1m²)
 - 66 million pixels (100x150µm)
 - Precision: $\sigma(r\phi) \sim \sigma(z) \sim 15 \mu m$
 - Most challenging operating environments (LHC)

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -3-

93 cm

The challenge: Super LHC - visually

LHC nominal luminosity

SLHC luminosity ~300-400 interactions/bx

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -4-

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -7-

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -8-

Radiation levels after 3000 fb⁻¹

• Radiation hardness requirements (including safety factor of 2)

- $2 \times 10^{16} n_{eq}/cm^2$ for the innermost pixel layers
- $7 \times 10^{14} n_{eq}/cm^2$ for the innermost strip layers

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -9-

Signal degradation for LHC Silicon Sensors

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -11-

Motivation to develop radiation harder detectors

- Super-LHC and expected radiation levels at the Super-LHC
- Radiation induced degradation of detector performance

Radiation Damage in Silicon Detectors

- Macroscopic damage (changes in detector properties)
- Microscopic damage (crystal damage)
- Approaches to obtain radiation hard sensors
 - Material Engineering
 - Silicon materials FZ, MCZ, DOFZ, EPI
 - Other semiconductors
 - Device Engineering
 - p-in-n, n-in-n and n-in-p sensors
 - 3D sensors and thin devices

• Silicon Sensors for the upgrade and open questions

- Collected Charge Signal to Noise Avalanche effects
- Mixed irradiations

<u>Reminder</u>: Reverse biased abrupt p⁺-n junction

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -13-

Change of Depletion Voltage V_{dep} (N_{eff})

• "Type inversion": N_{eff} changes from positive to negative (Space Charge Sign Inversion)

- Short term: "Beneficial annealing"
- Long term: "Reverse annealing"
 - time constant depends on temperature:
 - ~ 500 years (-10°C)
 - ~ 500 days (20°C)
 - ~ 21 hours (60°C)
 - Consequence: Detectors must be cooled even when the experiment is not running!

Change of Leakage Current (after hadron irradiation)

• Damage parameter α (slope in figure)

$$\alpha = \frac{\Delta I}{V \cdot \Phi_{eq}}$$

Leakage current per unit volume and particle fluence

 α is constant over several orders of fluence and independent of impurity concentration in Si
 ⇒ can be used for fluence measurement

- Leakage current decreasing in time (depending on temperature)
- Strong temperature dependence

$$I \propto \exp\left(-\frac{E_g}{2k_BT}\right)$$

Consequence: Cool detectors during operation! Example: *I*(-10°C) ~1/16 *I*(20°C)

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -15-

Deterioration of Charge Collection Efficiency (CCE) by trapping

Trapping is characterized by an effective trapping time τ_{eff} for electrons and holes:

$$Q_{e,h}(t) = Q_{0e,h} \exp\left(-\frac{1}{\tau_{eff\ e,h}} \cdot t\right)$$
 where $\frac{1}{\tau_{eff\ e,h}} \propto N_{defects}$

Increase of inverse trapping time $(1/\tau)$ with fluence and change with time (annealing):

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -16-

Two general types of radiation damage to the detector materials:

Motivation to develop radiation harder detectors

- Super-LHC and expected radiation levels at the Super-LHC
- Radiation induced degradation of detector performance

Radiation Damage in Silicon Detectors

- Macroscopic damage (changes in detector properties)
- Microscopic damage (crystal damage)
- Approaches to obtain radiation hard sensors
 - Material Engineering
 - Silicon materials FZ, MCZ, DOFZ, EPI
 - Other semiconductors
 - Device Engineering
 - p-in-n, n-in-n and n-in-p sensors
 - 3D sensors and thin devices

• Silicon Sensors for the upgrade and open questions

- Collected Charge Signal to Noise Avalanche effects
- Mixed irradiations

Shockley-Read-Hall statistics

Methods used by RD50 Collaboration

RD50-WODEAN project guided by G.Lindstroem (HH):

- C-DLTS (Capacitance Deep Level Transient Spectroscopy)
- I-DLTS (Current Deep Level Transient Spectroscopy)
- TSC (Thermally Stimulated Currents)
- PITS (Photo Induced Transient Spectroscopy)
- FTIR (Fourier Transform Infrared Spectroscopy)
- RL (Recombination Lifetime Measurements)
- PC (Photo Conductivity Measurements)
- PL (Photo Luminescence)
- EPR (Electron Paramagnetic Resonance)
- TCT (Transient Charge Technique)
- CV/IV (Capacitance Voltage and Current Voltage Characteristics)

Further interesting methods:

• Positron Annihilation, TEM, TSCAP,

TSC (Thermally Stimulated Currents)

Correlation: Microscopic and Macroscopic data

• TSC and CV measurements (Isothermal annealing after 2x10¹⁴ n/cm²)

- short term annealing well described
- microscopic results predict macroscopic findings!

[Alexandra Junkes, Hamburg University, RD50 Workshop June 2009]

Summary – defects with strong impact on the device properties at operating temperature

[I.Pintilie et al., Appl. Phys. Lett.92 024101,2008]

Motivation to develop radiation harder detectors

- Super-LHC and expected radiation levels at the Super-LHC
- Radiation induced degradation of detector performance
- Radiation Damage in Silicon Detectors
 - Macroscopic damage (changes in detector properties)
 - Microscopic damage (crystal damage)

• Approaches to obtain radiation hard sensors

- Material Engineering
 - Silicon materials FZ, MCZ, DOFZ, EPI
 - Other semiconductors
- Device Engineering
 - p-in-n, n-in-n and n-in-p sensors
 - 3D sensors and thin devices

• Silicon Sensors for the upgrade and open questions

- Collected Charge Signal to Noise Avalanche effects
- Mixed irradiations

Silicon Growth Processes

• Floating Zone Silicon (FZ)

- Basically all silicon tracking detectors made out of FZ silicon
- Some pixel sensors out of DOFZ Diffusion Oxygenated FZ silicon

- Czochralski Silicon (CZ) • The growth method seed silica used by the IC industry. crucible • Difficult to produce Si very high resistivity crystal Si melt heater Czochralski Growth
- Epitaxial Silicon (EPI)
 - Chemical-Vapor Deposition (CVD) of Si
 - up to 150 µm thick layers produced
 - growth rate about 1µm/min

Silicon Materials under Investigation by RD50

standard for	Material	Thickness [µm]	Symbol	ρ (Ωcm)	[O _i] (cm ⁻³)
detectors (Standard FZ (n- and p-type)	50,100,150, 300	FZ	1-30×10 ³	< 5×10 ¹⁶
	Diffusion oxygenated FZ (n) and p-type)	300	DOFZ	1-7×10 ³	~ 1-2×10 ¹⁷
used for LHC	Magnetic Czochralski Si, Okmetic, Finland (n- and p-type)	100, 300	MCz	~ 1×10 ³	~ 5×10 ¹⁷
Pixel detectors	Czochralski Si, Sumitomo, Japan (n-type)	300	Cz	~ 1×10 ³	~ 8-9 ×10 ¹⁷
"new"	Epitaxial layers on Cz-substrates, ITME, Poland (n- and p-type)	25, 50, 75, 100, 150	EPI	50 - 100	< 1×10 ¹⁷
silicon material	Diffusion oxyg. Epitaxial layers on CZ	75	EPI-DO	50 - 100	~ 7×10 ¹⁷

- DOFZ silicon
- Enriched with oxygen on wafer level, <u>inhomogeneous</u> distribution of oxygen
- CZ/MCZ silicon
- high Oi (oxygen) and O_{2i} (oxygen dimer) concentration (<u>homogeneous</u>)
 formation of shallow Thermal Donors possible
- Epi silicon
 high O_i, O_{2i} content due to out-diffusion from the CZ substrate (inhomogeneous)
 thin layers: high doping possible (low starting resistivity)
- Epi-Do silicon
- as EPI, however additional O_i diffused reaching <u>homogeneous</u> O_i content

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -25-

- Common to all materials (after hadron irradiation, not after γ irradiation):
 - reverse current increase
 - increase of trapping (electrons and holes) within ~ 20%

• Epitaxial silicon irradiated with <u>23 GeV protons</u> vs reactor neutrons

delopment of N_{eff} for EPI-DO after neutron and proton irradiation

TSC results after neutron and proton irradiation

comparison of TSC spectra 50

- SCSI after neutrons but not after protons
- donor generation enhanced after proton irradiation
- microscopic defects explain macroscopic effect at low Φ_{ea}

[A.Junkes, Hamburg University, RD50 Workshop June 2009]

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -27-

• Exposure of FZ & MCZ silicon sensors to 'mixed' irradiations

- First step: Irradiation with protons or pions
- Second step: Irradiation with neutrons

[G.Kramberger et al., "Performance of silicon pad detectors after mixed irradiations with neutrons and fast charged hadrons", NIMA 609 (2009) 142-148]

• A 'simplified' explanation for the 'compensation effects'

negative

- Defect clusters produce predominantly **negative space charge**
- Point defects produce predominantly **positive space charge** (in '<u>oxygen rich</u>' silicon)

For the experts: Note the NIEL violation

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -29-

Advantage of non-inverting material p-in-n detectors (schematic figures!)

Fully depleted detector (non – irradiated):

inverted to "p-type", under-depleted:

- Charge spread degraded resolution
- Charge loss reduced CCE

non-inverted, under-depleted:

•Limited loss in CCE

•Less degradation with under-depletion

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -31-

p-on-n silicon, under-depleted:

- Charge spread degraded resolution
- Charge loss reduced CCE

n-on-p silicon, under-depleted:
Limited loss in CCE
Less degradation with under-depletion
Collect electrons (3 x faster than holes)

Comments:

- Instead of n-on-p also n-on-n devices could be used

- Dominant junction close to n+ readout strip for FZ n-in-p
- For MCZ p-in-n even more complex fields have been reported:
 - no "type inversion" (SCSI) = dominant field remains at p implant
 - "equal double junctions" with almost symmetrical fields on both sides

- **n-in-p microstrip p-type FZ detectors** (Micron, 280 or 300µm thick, 80µm pitch, 18µm implant)
- **Detectors read-out with 40MHz** (SCT 128A)

- n-in-p microstrip p-type FZ detectors (Micron, 280 or 300µm thick, 80µm pitch, 18µm implant)
- **Detectors read-out with 40MHz** (SCT 128A)

- Why do planar silicon sensors with n-strip readout give such high signals after high levels (>10¹⁵ cm⁻² p/cm²) of irradiation?
 - Extrapolation of charge trapping parameters obtained at lower fluences would predict much lower signal!
 - Assumption: 'Charge multiplication effects' as even CCE > 1 was observed

Charge Multiplication – Epi Diodes

[J.Lange et al., 14th RD50 Workshop, June 2009]

- Epi diodes, 75 and 150 µm thick
- Measured trapping probability found to be proportional to fluence and consistent with values extracted in FZ
- Multiplication effect stronger for 75 µm diodes
- Smaller penetration depth (670 nm laser)
 → stronger charge multiplication

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -37-

Annealing studies on strip sensors

[I.Mandic, 15th RD50 Workshop, Nov.09 – Measured on HPK ATLAS sensors]

• p-type strip sensor; $\Phi_{eq} = 5 \times 10^{15} \text{ cm}^{-2}$ (neutrons) [ATLAS – HPK – sensors]

Further annealing studies

[G.Casse, Trento Workshop, Feb.2010 – Measured on HPK ATLAS sensors]

- p-type strip sensor; [ATLAS HPK]
- $\Phi_{eq} = 1 \times 10^{15} n_{eq} \text{ cm}^{-2}$ (26MeV protons)

Signal to Noise

- Stable operation of n-in-p sensors without cooling during maintenance periods seems feasible
- Still long way to fully understand high voltage operation of highly irradiated sensors

3D detector - concept

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -40-

Example: Testbeam of 3D-DDTC

• DDTC – Double sided double type column UBM/bump [G.Fleta, RD50 Workshop, June 2007] Passivation Metal Oxide n-type Si 50µm - doped TEOS oxide 2µm 10um 300µm Poly 3µm n+ doped n+ doped 50µm Metal 55µm pitch

- Testbeam data Example: efficiency map [M.Koehler, Freiburg Uni, RD50 Workshop June 09]
- Processing of 3D sensors is challenging, but many good devices with reasonable production yield produced.
- Competing e.g. for ATLAS IBL pixel sensors

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -41-

• Signal to Noise

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -42-

Use of other semiconductor materials?

Property	Diamond	GaN	4H SiC	Si
E _g [eV]	5.5	3.39	3.3	(1.12)
E _{breakdown} [V/cm]	107	$4 \cdot 10^{6}$	$2.2 \cdot 10^{6}$	$3 \cdot 10^{5}$
$\mu_{\rm e} [{\rm cm}^2/{\rm Vs}]$	1800	1000	800	1450
$\mu_{\rm h} [{\rm cm}^2/{\rm Vs}]$	1200	30	115	450
v _{sat} [cm/s]	$2.2 \cdot 10^7$	-	2.10^{7}	$0.8 \cdot 10^7$
e-h energy [eV]	(13)	8.9	7.6-8.4	(3.6)
e-h pairs/X ₀	4.4	~2-3	4.5	10.1

- Diamond: wider bandgap
 ⇒ lower leakage current
 ⇒ less cooling needed
- Signal produced by m.i.p: Diamond 36 e/µm Si 89 e/µm
 ⇒ Si gives more charge than diamond

• GaAs, SiC and GaN ⇒ strong radiation damage observed ⇒ no potential material for sLHC detectors (judging on the investigated material)

Diamond (<u>RD42</u>) ⇒ good radiation tolerance (*see later*)
 ⇒ already used in LHC beam condition monitoring systems
 ⇒ considered as potential detector material for sLHC pixel sensors

poly-CVD Diamond -16 chip ATLAS pixel module

single crystal CVD Diamond of few cm²

Diamnond sensors are heavily used in LHC Experiments for Beam Monitoring

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -43-

Are diamond sensor radiation hard?

[RD42, LHCC Status Report, Feb. 2010]

- Most published results on 23 GeV protons
- 70 MeV protons 3 times more damaging than 23 GeV protons
- 25 MeV protons seem to be even more damaging (Preliminary: RD42 about to cross check the data shown to the left)
- In line with NIEL calc. for Diamond [W. de Boer et al. Phys.Status Solidi 204:3009,2007]

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -44-

Outline

Motivation to develop radiation harder detectors

- Super-LHC and expected radiation levels at the Super-LHC
- Radiation induced degradation of detector performance

Radiation Damage in Silicon Detectors

- Macroscopic damage (changes in detector properties)
- Microscopic damage (crystal damage)

• Approaches to obtain radiation hard sensors

- Material Engineering
 - Silicon materials FZ, MCZ, DOFZ, EPI
 - Other semiconductors
- Device Engineering
 - p-in-n, n-in-n and n-in-p sensors
 - 3D sensors and thin devices

• Silicon Sensors for the LHC upgrade

- Collected Charge Signal to Noise Avalanche effects
- Mixed irradiations

Silicon materials for Tracking Sensors

• Signal comparison for various Silicon sensors

Note: Measured partly under different conditions! Lines to guide the eye (no modeling)!

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -47-

Silicon materials for Tracking Sensors

Note: Measured partly

(no modeling)!

Signal comparison for various Silicon sensors

highest fluence for strip detectors in LHC: The used p-in-n technology is sufficient n-in-p technology should be sufficient for Super-LHC at radii presently (LHC) occupied by strip sensors

Silicon materials for Tracking Sensors

Note: Measured partly

• Signal comparison for various Silicon sensors

- All sensors suffer from radiation damage
- Presently three options for innermost pixel layers under investigation:
 - **3-D silicon sensors** (decoupling drift distance from active depth)
 - Diamond sensors
 - Silicon planar sensors

Ongoing Work / Open Questions

- Is MCZ silicon (n- and p-type) an option for SLHC detectors?
 - Protons induce predominantly defects that are positively charged
 - Neutrons induce predominantly defects that are negatively charged
 - Mixed Fields: Compensation?
- Mixed irradiations:
 - (a) $\Phi_{eq} = 5 \times 10^{14}$ neutrons
 - (b) $\Phi_{eq} = 5 \times 10^{14}$ protons
- FZ (n-in-n)
- MCZ (n-in-n)

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -50-

Ongoing Work / Open Questions

- Is MCZ silicon (n- and p-type) an option for SLHC detectors?
 - Protons induce predominantly defects that are positively charged
 - Neutrons induce predominantly defects that are negatively charged
 - Mixed Fields: Compensation?
- Mixed irradiations:
 - (a) $\Phi_{eq} = 5 \times 10^{14}$ neutrons
 - (b) $\Phi_{eq} = 5 \times 10^{14}$ protons
- FZ (n-in-n)

Mixed Irradiation: Damage additive!

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -51-

Ongoing Work / Open Questions

- Is MCZ silicon (n- and p-type) an option for SLHC detectors?
 - Protons induce predominantly defects that are positively charged
 - Neutrons induce predominantly defects that are negatively charged
 - Mixed Fields: Compensation?
- [T.Affolder et al. RD50 Workshop, Nov.2008] 24 • Mixed irradiations: 22 • (a) $\Phi_{eq} = 5 \times 10^{14}$ neutrons 20 • (b) $\Phi_{eq} = 5 \times 10^{14}$ protons 18 Collected charge (ke) 16 • FZ (n-in-n) 14 **Mixed Irradiation:** 12 **Damage additive!** 10 8 • MCZ (n-in-n) MCz n-in-n (neutron only) 6 FZ n-in-n (neutron only) **Mixed Irradiation:** $\cdots \Delta \cdots$ MCz n-in-n (mixed) **Proton damage** 4 $\cdot \Box \cdot \cdot FZ$ n-in-n (mixed) "compensates" part of 2 **500V** neutron damage (N_{eff}) 0 200 600 800 400 1000 1200 0 More charge collected at 500V Bias (V) after additional irradiation!!!

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -52-

Radiation Damage in Silicon Detectors

• Change of <u>Depletion Voltage</u> (internal electric field, "type inversion",

reverse annealing, ...) (can be influenced by defect engineering!)

- Increase of <u>Leakage Current</u> (same for all silicon materials)
- Increase of <u>Charge Trapping</u> (same for all silicon materials)

<u>Signal to Noise ratio</u> is quantity to watch (material + geometry + electronics)

- Microscopic defects & Defect Engineering
 - Good understanding of damage after γ-irradiation (point defects)
 - Defects after hadron damage still to be better understood (cluster defects) although enormous progress in last 5 years a big question remains: Which are the defects responsible for the charge trapping?
- Approaches to obtain radiation tolerant devices:
 - Material Engineering: explore and develop new silicon materials
 - **Device Engineering:** 3D, thin sensors, n-in-p, n-in-n, ...

⇒ To obtain ultra radiation hard sensors a combination of material and device engineering approaches depending on radiation environment, application and available readout electronics will be best solution

• At fluences up to 10¹⁵cm⁻² (outer layers of SLHC detector):

The change of the depletion voltage and the large area to be covered by detectors are major problems.

- MCZ silicon detectors: n-MCZ show good performance in mixed fields due to compensation of charged hadron damage and neutron damage (N_{eff} compensation) (more work needed)
- <u>p-type silicon</u> microstrip detectors show very encouraging results: CCE ≈ 6500 e; Φ_{eq} = 4×10¹⁵ cm⁻², 300µm, immunity against reverse annealing!
 This is presently the "most considered option" for the ATLAS SCT upgrade
- At fluences > 10¹⁵cm⁻² (Inner SLHC layers or innermost upgraded LHC pixel) The active thickness of any silicon material is significantly reduced due to trapping. Collection of electrons at electrodes essential: Use n-in-p or n-in-n detectors!
 - Recent results show that <u>planar silicon</u> sensors might still give sufficient signal, (still some interest in epitaxial silicon and thin sensor options)
 - **3D detectors : looks promising, drawback: technology has to be optimized!** Many collaborations and sensor producers working on this.
 - **Diamond** has become an interesting option (*Higher damage due to low energy protons?*)
- Questions to be answered:
 - a) Can we profit from the avalanche effects and control them ?
 - b) Can we profit from MCZ (mixed field operation?)

ŋ

Acknowledgements

• Some material taken from the following summary talks:

- RD50 presentations on conferences: http://www.cern.ch/rd50/
- Nigel Hessey: Eiroforum RADHARD 2010 Workshop, Lisbon 16-18 March 2010 (Path to upgrade)
- Anthony Affolder: Presentations on the RD50 Workshop in June 2009 (sATLAS fluence levels)
- Frank Hartmann: Presentation at the VCI conference in February 2010 (Diamond results)
- ... most references to particular works given on slides.

Further information about RD50 activities: http://cern.ch/rd50/ Further R&D: RD42, RD39, ATLAS & CMS detector upgrade meetings, ATLAS IBL

... or go to DESY bldg. 67b where you will find the

Particle Physics & Detector Development Group

.. and more expertise in this research field than I can offer.

Michael Moll – Instrumentation Seminar, Hamburg 26.3.2010 -55-