The MPI Semiconductor Laboratory

within the MPG Advanced Study Group (ASG) within the Center of Free Electron Laser Science

Tracking and Imaging Detectors

in Heaven and on Earth

Prepared by

I. MPI-HLL (MPE and MPP)

Lothar Strüder, Rainer Richter, Matteo Porro, Florian Schopper, Gabi Schächner, Danilo Miessner, Martina Schnecke, Thomas Lauf, Gerhard Schaller, Norbert Meidinger, Sven Herrmann, Laci Andricek, Gerhard Fuchs, Johannes Treis, Nils Kimmel, Robert Andritschke, Zdenka Albrechtskirchinger, Valentin Fedl, Giulio de Vita, Georg Weidenspointner, Andreas Wassatsch, Hans-Günther Moser, Admir Ramic, Gerhard Fuchs Daniel Pietschner, Johannes Elbs, Olaf Hälker, Toboas Panzner, Stefanie Ebermayer, Sebastian Hasinger, Florian Aschauer, Alexander Bähr

PNSensor and PNDetector

Heike Soltau, Robert Hartmann, Peter Lechner, Peter Holl, Atakan Simsek Rouven Eckhart, Adrian Niculae, Klaus Heinzinger, Bianca Schweinfest, Andreas Liebel, Alois Bechtele, Uwe Weichert, Olga Jaritschin, Udo Weber Gerhard Lutz, Sebastian Ihle, Markus Lang, Dieter Schlosser Christian Reich, Christian Thamm, Kathrin Hermenau, Markus Kufner Adrian Niculae, Christian Sandow, Laure Mungenast, Barbara Titze, Melanie Schulze, Samantha Jeschke, Theresa Hildebrand, Petra Majewski, Andreas Liebel, Daniela Soffa

University of Leicester, Universität Tübingen, Universität Heidelberg, Universität Nürnberg-Erlangen, Universität Darmstadt, Universität Siegen Politecnico di Milano, DESY Hamburg, FZ Jülich, CEA, INAF, IKI, ESO, ESTEC, Penn State University, MIT, CfA, XFEL

MPI für Kernphysik, Sonnensystemforschung, medizinische Forschung, Quantenoptik, Biochemie, Metallforschung, Plasmaphysik, CFEL

OUTLINE

High speed, monolithic, large format detectors are being - or will be - used from 30 meV to 5 MeV for spectroscopic and intensity imaging of radiation

Infrared astronomy Optical astronomy X-ray astronomy Gamma ray astronomy Planetary science Adaptive optics

Imaging at synchrotrons and X-ray Free Electron Lasers (FLASH, LCLS, SCSS, XFEL) Solid state research Beam monitoring

Quality assurance & control X-ray fluorescence analysis (XRF) environmental control art and jewelery analysis Microbeam analysis (SEM, TEM) Wavelength dispersive spectroscopy (WDX)

Semiconductors as detector and electronics material

1. Semiconductors: $E_{Gap} \approx 1 - 2 \text{ eV}$

 \rightarrow small leakage currents

 \rightarrow low noise, operation @ r.t.

 \rightarrow large number of signal charges

per energy deposit in detector

- 2. Pair creation energy: w = 2 5 eV
- 3. Density: $\rho = 2 5 \text{ g cm}^{-3}$

This leads to:

good energy resolution high spatial resolution high quantum and detection efficiency good mechanical regidity and thermal conductivity

Semiconductors equally offer:

fixed space charges high mobility of charge carriers

DESY, Hamburg, 19. 2. 2010

\rightarrow high energy loss per unit length

 \rightarrow low range of δ - electrons

MPI

Detector and electronics simulation and layout

1. The detector idea: simulation of electrical properties

3. Design and layout of the entire detetor system, including signal processing and DAQ

2. Simulation of the production process

Ionization in Silicon

MPI Halbleiterlabo

energy resolution limited by

٠

$$ENC_{el} = \sqrt{\alpha \frac{2kT}{g_m} C_{tot}^2 A_1 \frac{1}{\tau} + 2\pi a_f C_{tot}^2 A_2 + q I_L A_3 \tau}$$

- electronic noise
 - detector design, integrated electronics
 - cooling
 - fast operation
 - repetitive readout
- Fano noise, ultimate statistical limit

$$ENC_{fano} = \sqrt{\frac{F \cdot E_X}{W}}$$

total noise

$$ENC_{tot}^2 = ENC_{el}^2 + ENC_{fano}^2$$

DESY, Hamburg, 19. 2. 2010

- different electronic noise levels
- Fano limit

spectral performance

- low energy background, composed of
 - lines (escape, fluorescence)
 - 🔸 continuum
- continuum caused by signal charge loss
 - detector edge

- collimation
- insensitive regions
- split events
- trapping

- → layout
 → reconstruction
 - base material, technology
- entrance window dead layer

unavoidable insensitive layer: undepleted Si, metal

 \rightarrow

- → minimize layer thickness
- → terminate surface with 'reflector'

P/B ≈ 1.500

 $P/B \approx 6.000$

- P/B = peak to background ratio
 - = amplitude ratio of Mn-K α line and mean background at 1 ± 0.2 keV

time resolution

- required to allocate events in different detector components
 e.g. Compton camera, (anti)coincidence
- limited by
 - drift & diffusion dynamics
 e.g. electron package, 10 nsec drift

$$σ_x = (2 \cdot kT/q \cdot \mu \cdot t_{drift})^{\frac{1}{2}} \approx 8 \mu m$$

 $σ_t = σ_x / v_{drift} \approx 0.2 \text{ nsec}$

- signal/noise ratio
- measured:

```
self-triggering linear SDD
using hole signal as start trigger for
drift time
time jitter 1.5 nsec @ 30.000 el. signal
```


position resolution

- depending on specific application
 - example pixel sensor for X-ray imaging spectroscopy pixel size 75 μm el. noise 5 el. r.m.s signal charge 1.000 el.

use of multiple pixel hits → position resolution « pixel size e.g. 0.5 μm r.m.s @ pixel border 13 μm r.m.s. @ pixel center

- limited by el. noise
- tradeoff

energy vs. position resolution

position precision of pixelated detector 1dim model

-	pixel	size	75 µm
---	-------	------	-------

- signal charge 1.000 el.
- el. noise 5 el. r.m.s.

Single photon counting position precision (@ 5 keV)

DESY, Hamburg, 19. 2. 2010

Lothar Strüder, MPI Halbleiterlabor and Universität Siegen

energy range

- m.i. particles no problem
- photons
 Si is 'transparent'
 - at high energies » 10 keV
 absorption ~ Z⁵/E³
 - in the IR
 photon energy < E_{gap}
 - → transmission without interaction
 - Si is a good absorber
 - in the optical
 - in the UV

DESY. Hamburg. 19. 2. 2010

- at X-rays from 100 eV to 15 keV
- → loss of signal charges in the entrance window dead layer

Photon conversion in signal electrons

MPI Halbleiterlabor

Sensitivity vs. different ARC

MPI Halbleiterlabor

DESY, Hamburg, 19. 2. 2010

DESY, Hamburg, 19. 2. 2010

Lothar Strüder, MPI Halbleiterlabor and Universität Siegen

22

Carrier transport

Drift (acceleration between random collisions)

$$egin{aligned} ec{
u}_n &= -rac{q\cdot au_{ ext{c}}}{m_n}\,\mathcal{E} = -\mu_n\mathcal{E} \ ec{
u}_p &= rac{q\cdot au_{ ext{c}}}{m_p}\,\mathcal{E} = \mu_p\mathcal{E} \end{aligned}$$

Current density (drift and diffusion)

$$ec{J_n} = q \mu_n n \mathcal{E} + q D_n
abla n \ ec{J_p} = q \mu_p p \mathcal{E} - q D_p
abla p$$

Diffusion

MPI laibleiterlabo

$$ec{F_n} = -D_n
abla n$$

 $ec{F_p} = -D_p
abla p$

Einstein equation

Inside magnetic field

$$an heta_p = \mu_p^{
m H} \mathcal{B}$$

 $an heta_n = \mu_n^{
m H} \mathcal{B}$

Continuity equations

Simultaneous consideration of

 $\begin{array}{ll} \mbox{Generation} & & \displaystyle \frac{\partial n}{\partial t} = \mu_n n \nabla \mathcal{E} + D_n \nabla^2 n + G_n - R_n \\ \mbox{Drift} & & \displaystyle \frac{\partial p}{\partial t} = -\mu_p p \nabla \mathcal{E} + D_p \nabla^2 p + G_p - R_p \end{array}$

Drift due to electric field derived from Poisson Equation

$$abla \mathcal{E} = rac{
ho}{\epsilon \epsilon_0} \;\;,\;\; ext{with}\;
ho = q(p-n+N_{ ext{D}}-N_{ ext{A}})$$

Numerical simulation: simultaneous solution of diffusion and Poisson equation with boundary conditions

DESY, Hamburg, 19. 2. 2010

p-n junction - no bias

- Thermal equilibrium
 - Constant Fermi level
- Drift current equal diffusion current
- Built in voltage

$$n_n = N_{\mathrm{D}} = n_{\mathrm{i}} \mathrm{e}^{\frac{E_{\mathrm{F}} - E_{\mathrm{i}}^n}{kT}}$$

$$p_p = N_{\mathrm{A}} = n_{\mathrm{i}} \, \mathrm{e}^{rac{E_{\mathrm{i}}^p - E_{\mathrm{F}}}{kT}}$$

$$N_{\mathrm{A}} \cdot N_{\mathrm{D}} = n_{\mathrm{i}}^2 \mathrm{e}^{rac{E_{\mathrm{i}}^p - E_{\mathrm{i}}^n}{kT}}$$

Built in voltage

$$V_{\rm bi} = \frac{1}{q} (E_{\rm i}^p - E_{\rm i}^n) = \frac{kT}{q} \ln \frac{N_{\rm A} N_{\rm D}}{n_{\rm i}^2}$$
$$= 0.0259 \ \ln \frac{10^{16} \cdot 10^{12}}{(1.45 \times 10^{10})^2} = 0.458 \,\rm V$$

Example: high doped n (10¹⁶) on low doped $p(10^{12})$

٠

p-n junction - under bias

Application of an exteral voltage

Change extent of space charge region

$$d = \sqrt{\frac{2\epsilon\epsilon_0(N_{\rm A} + N_{\rm D})}{qN_{\rm A}N_{\rm D}}(V_{\rm bi} - V)}$$

- Non-equilibrium: Fermi level not defined
- Drift current not equal diffusion current
- Diffusion of minority carriers into (out of) space charge region

$$\begin{split} J &= (J_{\mathbf{s}_n} + J_{\mathbf{s}_p}) \left(\mathbf{e}^{\frac{qV}{kT}} - 1 \right) = J_{\mathbf{s}} \left(\mathbf{e}^{\frac{qV}{kT}} - 1 \right) \\ J_{\mathbf{s}} &= q \left(\frac{n_{p_0} D_n}{\sqrt{D_n \tau_{\mathbf{r}_n}}} + \frac{p_{n_0} D_p}{\sqrt{D_p \tau_{\mathbf{r}_p}}} \right) \end{split}$$

DESY, Hamburg, 19. 2. 2010

Basis: Die in Sperrrichtung gepolte Diode

p+ diade -80V

Depletionsverhalten von Dioden

$$d = \sqrt{\frac{2\epsilon\epsilon_0(N_{\rm A} + N_{\rm D})}{qN_{\rm A}N_{\rm D}}(V_{\rm bi} - V)}$$

diode

material silicon

germanium compound semiconductors (CdTe, CZT, ...)

- geometry size 5 mm² ... several cm² thickness 300, 500 μm, 1 mm
- applications
 X-ray spectroscopy
 γ-ray spectroscopy

structured diode: singlesided strip detector

material si

silicon

germanium compound semiconductors (GaAs, CdTe, CZT, ...) diamond

geometry

♦ size	wafer size		
	typ.	6 x 6 cm²	
		10 x 10 cm²	
+ thickn	ess	300, 500 <i>µ</i> m	
+strip v	width/pitch	it depends	
		10 <i>µ</i> m 1 mm	
+ positio	on accuracy	down to few <i>µ</i> m	

- applications
 - + particle tracking

structured diode: doublesided strip detector

material

silicon

germanium compound semiconductors (GaAs, CdTe, CZT, ...) diamond

geometry

◆ size	wafer size	
	typ.	$6 \times 6 \text{ cm}^2$
		10 x 10 cm²
+ thickn	ess	300, 500 μm
+strip v	vidth/pitch	it depends
		10 <i>µ</i> m 1 mm
+ positio	on accuracy	down to few µm

applications
 particle tracking

DESY, Hamburg, 19. 2. 2010

double-sided strip detector

- advantage
 n² resolution elements with
 2n readout channels
- disadvantage ambiguity at high occupancy
 - → 2dim pixel sensor

??

34

pad detector 'p on n'

- material
- silicon

germanium compound semiconductors (GaAs, CdTe, CZT, ...) diamond

geometry

+ size

wafer size

typ.	$6 \times 6 \text{ cm}^2$	
	10 x 10 cm²	
 thickness 	300, 500 <i>µ</i> m	
→ pixel size	≥ 50 <i>µ</i> m	

- applications
 - + particle tracking
 - → detection of individual charged particles
 - + imaging
 - \mapsto count / integrate particles or photons

pad detector 'n on n' material silicon germanium compound semiconductors (GaAs, CdTe, CZT, ...) diamond geometry wafer size + size $6 \times 6 \text{ cm}^2$ typ. $10 \times 10 \text{ cm}^2$ + thickness 300, 500 μm lectron potential (-V) + pixel size ≥ 50 µm 40 20 applications + particle tracking 300 \mapsto detection of individual charged particles + imaging \rightarrow count / integrate particles or photons

separation mesh

300

width [um]

200

n+ pads

back contact
diode

electronic noise

$$ENC = \sqrt{\alpha \frac{2kT}{g_m} C_{tot}^2 A_1 \frac{1}{\tau} + 2\pi a_1 C_{tot}^2 A_2 + q I_L A_3 \tau}$$

- optimum shaping time $\tau_{opt} = \sqrt{\frac{2A_3}{A_1} \frac{kTC_{tot}^2}{q} \frac{2}{I_L} \frac{2}{3g_m}}$
- ⊢ for
 - good resolution
 - high count rate capability

the total capacitance must be minimised!!

sideward depletion structure

Emilio Gatti & Pavel Rehak, 1983

- symmetric bias
- volume is fully depleted by reverse biased diodes on both surfaces
- minimum capacitance of bulk contact, independent of overall area
- potential minimum for majority carriers (electrons @ n-Si) in the centre plane

sideward depletion structure

asymmetric bias

- volume is fully depleted by reverse biased diodes on both surfaces
- minimum capacitance of bulk contact, independent of overall area
- vertical shift of the potential minimum

?? signal extraction ??

 \mapsto advanced detector concepts

DESY, Hamburg, 19. 2. 2010

Lothar Strüder, MPI Halbleiterlabor and Universität Siegen

SDD with on-chip FET

- one-sided field strip system
- backside illuminated
- integration of 1st amplifying FET dedicated n-JFET
 - → minimization of total capacitance
 - \rightarrow good energy resolution
 - → high count rate capability
 - → robust against pickup, microphony
 - comparison → pin diode 10 mm² × 300 µm C_{tot} = **3.5 pF**
 - SDD with FET 10 mm²
 C_{tot} = 50 fF

How many charges can be stored in one pixel ?

What determines the charge handling capacity in a pixel ?

<mark>pixel volume</mark>: 20x40x12 μm³ ≈ 1x10⁴μm³

Doping: $10^2 P \text{ per } \mu \text{m}^3$

 $CHC = 5 \times 10^5 \text{ per pixel}$

can be increased by external voltages

can be increased by doping

♦ DEPFET

Josef Kemmer & Gerhard Lutz, 1987

applications

low noise

DESY. Hamburg. 19. 2. 2010

- + unit cell of active pixel sensor
 - \mapsto X-ray imaging & spectroscopy
 - \rightarrow particle tracking
- integrated readout device of SDD, CCD, ...
- format ~ cm² ... wafer scale
- thickness 50 ... 450 μm
- pixel size 20 ... 500 µm □

... 1 cm² (DEPFET & SDD)

2 - 3 el. ENC

• readout time 2 µsec / row

DEPFET

p-MOSFET on depleted n-substrate

- combined detector & amplifier function
- localized potential minimum under gate = 'internal gate'
 - \rightarrow modulation of FET current (300 pA/el.)
- low capacitance (20 fF) and noise → excellent spectroscopic performance
- charge storage capability
 - \mapsto readout on demand
- non-destructive readout
 - → potential of repetitive readout
- complete clearing of signal charge

 → no reset noise
- backside illuminated, fully depleted
 - \rightarrow quantum efficiency

The EPIC pnCCDs on XMM-Newton *

- 3 imagers
 > 2 MOS-CCD + RGS
 > 1 pnCCD
- energy range
 > 0.1 ... 15 keV
- Wolter-I telescopes
 - \triangleright 58 nested mirror shells
 - \triangleright eff. area 0,5 m² (1 keV)
 - \triangleright focal length 7,5 m
 - ▷ FOV 30 arcmin
 - \triangleright resolution 15 arcsec

- highly excentric orbit
 - ⊳ 48 h
 - ▷ perigee: 7.000 km
 - ▷ apogee: 120.000 km

MPI

XMM EPIC pnCCD

Device

- Monolithic array of 12 pnCCDs
- \triangleright 200 x 64 pixels each
- \triangleright pixel size
 - 150 x 150 μm²
- \triangleright 6 x 6 cm² area
- ▷ 4" wafer
- \triangleright 280 μ m thick
- Common entrance window

Performance

- \triangleright 6 e- ENC
- Readout time4.5 ms
- > Integration time100 ms
- Energy resolution150 eV FWHM @ 5.9 keV

MP

XMM-Newton observations

 $\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$

Tycho SNR

- Image and spectrum
- Supernova remnant
- Observed by Tycho Brahe in 1532

XMM Summary

++++ +++ MPI Halbleiterlabor

- Working since launch (10. Dez. 1999) without any problem.
- The energy resolution @ the Al_k line (1.5keV) decreased since launch from 98 eV to 99 eV (FWHM).
- Since launch the operating conditions have never been changed.
- Up to now more than 20.000 observations were made with XMM – Newton.
- Up to now, > 3.000 refereed astrophysics publications have been made

QSO SDSS 1044-0125 European Space Agency

Very high redshift QSO observed by XMM EPIC

eRosita

ROSAT All-Sky survey (RASS)

- \triangleright Limited energy range
- \triangleright Lack in sensitivity

All-Sky survey

- \triangleright Pathfinder for NGXT
- ▷ Hidden population of AGN
- Extension of RASS towards higher energies
- ▷ 7 Wolter-I Mirrors
- \triangleright 54 shells each (27 before)
- ▷ Framestore pn-CCDs
- \triangleright Focal distance ~1.6 m
- \triangleright FoV 1° diam.
- \triangleright 15" resolution on-axis
- ▷ 660kg / 250W

Instrument Structure

- CFRP Honeycomb Structure
 - \triangleright leightweight
 - \triangleright thermally stable
- Hexapod Mounting
 - no thermal/mechanical stresses induced on structure
- Sunshield
- Startracker mounted on structure

Four $3 \text{cm} \times 3 \text{cm} \text{CCDs}$ still on Si-Wafer. The CCDs have 384×384 pixels in both image and framestore area.

Pixelsize: $75 \times 75 \,\mu\text{m}^2$.Cycle time: $50 \,\text{msec}$

Measurements at C Ka (277eV) and Mn Ka (5,9 keV) on flight-CCDs (2cm × 2cm) show the expected energy resolution and low energy response.

Imaging

Status of eROSITA

Contracts with ROSKOSMOS have been signed

Mirror fabrication is contracted to the companies MediaLario and ZEISS

Mechanical and electrical models of the flight cameras have been built

Engineering model is in progress

Launch is expected in 2013

Time resolved structure determination with X-ray FELs

t=-20fs

Crystal

t = -2fs

Pulse

t=2fs

t=5fs

t=10fs

t=50fs

Measurements with 512x256 pnCCDs @ FLASH + BESSY

3

E DE E DD

256 parallel low noise 2 or 4 output nodes

Free Electron Lasers

Screen-Shots: To be evaluated!

+++ MPI Halbleiterlabor

typ. 5.000 X-rays per shot per detector, i.e. ≈ 0.1 photon per pix

Measurement @ FLASH λ ≈ 40 nm on Xe clusters

E = 30 eV i.e. 8.1 e/h pairs

ENC = 2.7 el. (rms)

DESY, Hamburg, 19. 2. 2010

Achievements of the FLASH, LCLS and XFEL

	FLASH, LCLS + XFEL	pnCCD system
single photon resolution	yes	yes
energy range	0.05 < E < 24 (keV)	0.05 < E < 25 [keV]
pixel size (µm)	100	75
sig.rate/pixel/bunch	10 ³ (10 ⁵)	10 ³ - 10 ⁴
quantum efficiency	> 0.8	> 0.8 from 0.6 to 12 keV
number of pixels	512 x 512 (min.)	1024 × 1024 and 2048 × 2048
frame rate/repetition rate	10 Hz - 120 Hz	up to 250 Hz
Readout noise	< 50 e ⁻ (rms)	< 5 e ⁻ (rms) (2 e ⁻ possible)
cooling	possible	around - 40º C room temperature possible
vacuum compatibility	yes	yes
preprocessing	no (yes) ?	possible upon request
DESY, Hamburg, 19. 2. 2010 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 66		

pnCCD: 1024×512 , 30 cm^2

Area: 29.6

Vitel 3

Imaging

7.8 x 3.7 cm² = 29.6 cm² 75 x 75 μm² 1024 parallel read nodes 2 e⁻ @ 250 fps

for 6 keV X-rays the system delivers 4k × 4k resolution points in all the area with less than one photon per pixel (typ. 90 %)

CAMP pnCCD module performance (typical module)

- → 588 noisy or bad pixel out of 524.288 pixel
- → average noise is 8 electrons (rms) at 40 ° C, frame rate up to 120 Hz
- \rightarrow min. X-ray energy: 850 eV, i.e. 240 electrons. S/N = 30/1

76

CAMP pnCCD module performance (typical module)

First Experiments at LCLS

- Fluorescence (PI: Daniel Rolles)
- Cluster
 (PI: Christoph Bostedt)
- Imaging
 (PI: Henry Chapman)
- Molecule alignment (PI: HC and Jochen Küpper) (was cancelled because of safety issues, will be carried out in May 2010)

Fluorescence Spectroscopy @ LCLS

Daniel Rolles experiment

81

Achievements with pnCCDs at FLASH and LCLS

Photon Counting and Integrating X-ray Imaging Detectors

	FLASH, LCLS	pnCCD system
single photon resolution	yes	yes
energy range	0.05 < E < 24 (keV)	0.05 < E < 25 [keV]
pixel size (µm)	100	75
sig.rate/pixel/bunch	10 ³ (10 ⁵)	10 ³ - 10 ⁴
quantum efficiency	> 0.8	> 0.8 from 0.8 to 12 keV
number of pixels	512 x 512 (min.)	2 times 1024 x 1024
frame rate/repetition rate	10 Hz - 120 Hz	up to 120 Hz
Readout noise	< 50 e [.] (rms)	< 5 e [.] (rms) (up to 20 e [.] in low gain)
cooling	possible	around - 40° C
		room temperature possible
vacuum compatibility	yes	yes
preprocessing	no (yes) ?	possible upon request

DEPFET matrix devices

Readout scheme

- ▷ Global drain contact
- Gate,Clear and Cleargate connected row-wise
- Sources connected columnwise
- Only one row is turned on and read out
- Source follower readout
 - Column bias by current source
 - Alternatively: Conversion of drain current

Target:

- \triangleright Framerate 1 kHz
- ▷ Array dimension 1024 x 1024
- \triangleright Energy resolution < 125 eV FWHM @ 5.9 keV

■ 2 ASICS required:

- ▷ Analog Amplifier ASIC
- \triangleright Switcher ASIC

DEPFETs for the XEUS WFI

- 1. Flexible operating modes
- 2. low power dissipation (less than2 W in 100 cm², DePFETs only)
- 3. Fano limited energy resolution from 0.5 keV to 30 keV
- 4. Spatial resolution better than 20 μm @ 100 μm pixel size
- 5. Homogeneous radiation entrance window
- 6. Intrinsic radiation hardness, no charge transfer needed
- 7. ENC was lowered to 0.2 e⁻ rms with RNDR
- 8. Thin optical ``Blocking Filter'' can be directly integrated
- 9. Operation at ``warm temperatures'', e.g. – 40 ° C

yield & homogeneity

- defect pixels
 - 2 in 45 devices (> 10⁶ pixels)

pixel yield > 0.99999

dispersions

offset	< 2 %	(of Mn-Ka)
gain	< 5 %	
noise	< 10 %	

DEPFET APS - mesh experiment

method

- irradiation through tilted periodic mesh
- Moire pattern
- X-ray interaction position with subpixel resolution

example

- variation of multiple pixel hit patterns with back contact voltage
- V_back =

What is the challenge for Detectors @ XFEL

Time structure: difference with "others"

Electron bunch trains; up to 3000 bunches in 600 μ sec, repeated 10 times per second. Producing 100 fsec X-ray pulses (up to 30 000 bunches per second).

DSSC - Expected Performance

Parameter	Expected DSSC performance
Energy range	0.5 … 25 keV (optimized for 0.5 … 4 keV)
Number of pixels	1024 x 1024
Sensor Pixel Shape	Hexagonal
Sensor Pixel pitch	∼ 204 x 236 µm²
Dynamic range / pixel / pulse	> 10.000 photons @1 keV
Resolution (S/N >5:1)	Single photon @ 1 keV (5 MHz) Single photon @ 0.5 keV (≤ 2.5 MHz)
Electronics noise	< 25 electrons r.m.s.
Frame rate	1-5 MHz
Stored frames per Macro bunch	≥ 512
Operating temperature	-10°C optimum, RT possible

DSSC - Concept

- DEPFET Active Pixel Sensor
- Every DEPFET pixel provides detection and amplification with:
 - Low noise
 - Signal compression at the sensor level
 - High speed (fully parallel readout at 1-5 MHz)

Conclusions

Silicon detectors are excellent for

Infrared detection up to λ = 40 μm and beyond
 In the NIR, optical and UV bandwidth silicon offers efficient, fast and large light detection opportunities
 For X-rays between 50 eV and 30 keV silicon detectors operate at the limits of the physical precision
 Gamma rays can be efficiently detected spectroscopically from 10 keV up to 10 MeV
 Particle detection (mips, p, e, Alpha's, heavy ions, 1...) is performed with Si - detectors since the very beg.

Silicon detector development is heavily supported by microelectronics industries and micromechanical device fabrication

The MPI Semiconductor laboratory^{*} at the SIEMENS Research Campus in Munich

DESY, Hamburg, 19. 2. 2010

101

(Not) The End