Challenges, Current Developments and Future Possibilities for Detectors in High Energy Physics

Joint Instrumentation Seminar

DESY

February 5, 2010

Joachim Mnich

Future of Experimental Particle Physics

- > Future directions in particle physics very much depends on LHC
- > Energy frontier:
 - LHC and upgrades (sLHC)
 - Linear Collider (ILC) or CLIC
- > Other projects
 - Super b-factories
 - Neutrino physics
- Here: concentrate on energy frontier

The Large Hadron Collider (LHC)

ALICE

Transverse Slice Through Detector (CMS)

Challenges for LHC Detectors

> Protons are composite particles

- Bags filled with quarks and gluons
- Quark-quark and gluon-gluon collisions are the fundamental processes
- Screened by interactions of other quarks & gluons
- > LHC is filled with 2835 + 2835 proton bunches
 - Collisions every 25 ns 40 MHz crossing rate
- > 10¹¹ protons per bunch
 - 25 pp interactions per crossing (pile-up)
 - Each bunch collision produces ≈ 1600 charged particles

Cross Section of Various SM Processes

- **b** Low luminosity phase $10^{33}/\text{cm}^2/\text{s} = 1/\text{nb/s}$
- approximately
 - > 10⁸ pp interactions
 - > 10⁶ bb events
 - > 200 W-bosons
 - 50 Z-bosons
 - 1 tt-pair
- will be produced per second and
 - > 1 light Higgs

per minute!

The LHC is a b, W, Z, top, Higgs, ... factory!

The problem is to detect the events!

Experimental Signatures

1. Hadronic final states, e.g. quark-quark

no high $p_{\rm T}$ leptons or photons in the final state

holds for the bulk of the total cross section

2. Lepton/photons with high p_T, example Higgs production and decay

Important signatures for interesting events:

- leptons and photons
- missing transverse energy

Suppression of Background

with 25 pile-up events

removing tracks with p_T < 25 GeV

requires high granularity (many channels)good position, momentum and energy resolution

LHC Detector Design Aspects

- good measurement of leptons (high p_T) muons: large and precise muon chambers electrons: precise electromagnetic calorimeter and tracking
- good measurement of photons
- good measurement of missing transverse energy (E_T^{miss}) requires in particular good hadronic energy measurements down to small angles, i.e. large pseudo-rapidities (η ≈ 5, i.e. θ ≈ 1°)
- in addition identification of b-quarks and τ-leptons precise vertex detectors (Si-pixel detectors)

Very important: radiation hardness e.g. flux of neutrons in forward calorimeters 10¹⁷ n/cm² in 10 years of LHC operation

Vertex Detector

> Hybrid pixel detector

- 100 μm x 150 μm
- 10⁸ channels

Tracking Detector

> Silicon strip detector

- > 16000 such modules built
- > 220 m² of silicon surface (almost a tennis court...)
- > Largest silicon detector ever built

Online Trigger

Trigger of interesting events at the LHC is much more complicated than at e⁺e⁻ machines

- interaction rate: $\approx 10^9$ events/s
- max. record rate: ≈ 100 events/s event size ≈ 1 MByte $\Rightarrow 1000$ TByte/year of data
- \Rightarrow trigger rejection $\approx 10^7$
- collision rate is 25 ns (corresponds to 5 m cable delay)
- trigger decision takes \approx a few μ s

⇒ store massive amount of data in front-end pipelines while special trigger processors perform calculations

Trigger & DAQ system

Filter farm:

- approx. 2000 CPUs
- easily scaleable
- staged (lower lumi & saves money)
- uses offline software

Future Challenges at the LHC

> Super-LHC (sLHC)

- Increase luminosity by factor 10, i.e. 10³⁵/cm²/s in steps until ≈ 2020
- Higher collision rates
 ≈ few hundred pile-up events
- Increased radiation hardness (inner detectors)
- Higher granularity pixel, strixel, strips
- Improved 1st level trigger high p_T leptons & jets
- Less material in inner detectors

- . . .

The International Linear Collider (ILC)

- Electron-positron collider
 - centre-of-mass energy up to 1 TeV centre-of-mass energy
 - Iuminosities > 10³⁴/cm²/s
- Designed in a global effort
- Accelerator technology: supra-conducting RF cavities

ILC Detector Design

- Vertex detector:
 - e.g. distinguish c- from b-quarks
 - goal impact parameter resolution
 - $\sigma_{r\phi} \approx \sigma_z \approx 5 \oplus 10/(p \sin \Theta^{3/2}) \ \mu m$ 3 times better than SLD
 - small, low mass pixel detectors, various technologies under study O(20×20 μm²)
- Tracking:
 - superb momentum resolution to select clean Higgs samples
 - ideally limited only by Γ_Z
 - $\rightarrow \Delta(1/p_T) = 5 \cdot 10^{-5} / \text{GeV}$ (whole tracking system) 3 times better than CMS

$e^+e^- \rightarrow ZH/ZZ \rightarrow l\bar{l} X$ $\sqrt{s}=300 GeV \qquad \int L dt = 500 fb^{-1}$ $\Delta E/E \sim 0.1\%$ $OP_T/P_T^2 = 5 \times 10^{-5}$

Options considered:

- Large silicon trackers (à la ATLAS/CMS)
- Time Projection Chamber with $\approx 100 \ \mu m$ point resolution

Impact on ILC Detector Design

- Calorimeter: distinguish W- and Z-bosons in their hadronic decays
 → 30%/√E jet resolution! 2 t
- $\sum_{e^{-}}^{e^{+}} \sum_{H \leftarrow H \atop H}^{Z} \sum_{H \leftarrow H \atop H}^{Z} \sum_{H \leftarrow H}^{Z} \sum_{H}^{Z} \sum_{H$

2 times better than ZEUS

• WW/ZZ \rightarrow 4 jets:

Joachim Mnich | DESY Joint Instrumentation Seminar

Detector Challenges at the ILC

- Bunch timing:
 - 5 trains per second
 - 2820 bunches per train separated by 307 ns
 - no trigger
 - power pulsing
 - readout speed
- 14 mrad crossing angle
- Background:
 - small bunches
 - create beamstrahlung
 → pairs

backgound not as severe as at LHC but much more relevant than at LEP

The CLIC Two Beam Scheme

- Higher gradient: 100 MV/m
- Higher cms energy: 3 TeV

Two Beam Scheme

CLIC Time Structure

> Bunch Spacing

- ILC: 337 ns, enough time to identify events from individual BX
- CLIC: 0.5 ns, extremely difficult to identify events from individual BX
- need short shaping time of pulses
- power cycling with 50 Hz instead 5 Hz at ILC

Main Differences CLIC as compared to ILC

> Higher energy results in more dense particle jets

- Improved double track resolution
- Calorimeters with larger thickness and higher granularity

> Much shorter bunch spacing

- CLIC 0.5 ns wrt. ILC 337 ns
- Requires time stamping
- Impact on pulsed power electronics
- Smaller beam sizes and higher energy
 - Result in more severe background

Calorimetry at a Linear Collider

- Try to reconstruct every particle in a jet
 Particle Flow
- High granularity huge number of readout channels
- > E.g. SiW ECAL
 - 23 X0 depth
 - 0.6 X0 1.2 X0 long. segmentation
 - 5×5 mm² cells
 - electronics integrated in detector

Summary

> Trends in particle physics

- Radiation hardness
- Increasing resolution (space & time)
- Higher granularity, increased number of channels

> Synergy with other fields

- Silicon technology
- Readout and DAQ
- Time stamping

> DESY is the ideal place to develop detector technologies across science fields

Backup

Elementary Particle Physics: Challenges and Visions

> Particle Physics entering Terascale

Start of the Large Hadron Collider (LHC) at CERN

> Expect answers to fundamental questions

- Origin of mass (Higgs)
- Mystery of Dark Matter
- Supersymmetry
- Extra space dimensions
- Grand Unification

Comparison Proton and Electron Colliders

- Proton (anti-) proton colliders:
 - Energy range higher (limited by magnet bending power)
 - Composite particles, different initial state constituents and energies in each collision
 - Hadronic final states difficult
- Discovery machines
- Excellent for some precision measurements

- Electron positron colliders:
 - Energy range limited (by RF power)
 - Point-like particles, exactly defined initial state quantum numbers and energies
 - Hadronic final states easy
- Precision machines
- Discovery potential

Colliders for the Terascale

> Proton-(anti)proton collider

- Higher energy reach limited by magnet bending power
- But much harder for experiments

> Electron-Positron Collider

- Like DORIS & PETRA at DESY or LEP at CERN
- Point-like particles
- But limited in energy by synchrotron radiation
- ➔ Linear Colliders

ILC Physics Motivation

- ILC will complement LHC discoveries by precision measurements
- Here just one example: Higgs
 - e⁺e⁻ experiments can detect Higgs bosons without assumption on decay properties Higgs-Strahlungs process (à la LEP)
 - identify Higgs events in e⁺e[−] → ZH from Z → μμ decay
 - count Higgs decay products to measure Higgs BRs
 - and hence (Yukawa)-couplings

Distinguish W and Z bosons in their hadronic decays!

BR (W/Z \rightarrow hadrons) = 68% / 70%

Requires exquisit jet energy resolution

Two Detectors: Push Pull

Additional complication:

One interaction region, but two detectors:

push pull operation anticipated

Comparison ILC and CLIC

Center-of-mass energy	ILC 500 GeV	CLIC 500 GeV	CLIC 3 TeV	
Total (Peak 1%) luminosity [·10 ³⁴]	2(1.5)	2.3 (1.4)	5.9 (2.0)	
Repetition rate (Hz)	5	50		
Loaded accel. gradient MV/m	32	80	100	
Main linac RF frequency GHz	1.3	12		
Bunch charge [·10 ⁹]	20	6.8	3.7	
Bunch separation (ns)	370	0.5		←
Beam pulse duration (ns)	950μs	177	156	
Beam power/beam (MWatts)		4.9	14	
Hor./vert. IP beam size (nm)	600 / 6	200 / 2.3	40 / 1.0	
Hadronic events/crossing at IP	0.12	0.2	2.7	
Incoherent pairs at IP	1 ·10⁵	1.7·10⁵	3·10⁵	←
BDS length (km)		1.87	2.75	
Total site length km	31	13	48	
Total power consumption MW	230	130	415	

Crossing Angle 20 mrad (ILC 14 mrad)