Femtosecond serial imaging using fast integrating detectors

Anton Barty (and 85+ collaborators)

Center for Free Electron Laser Science (CFEL)
DESY, Hamburg, Germany

This work was the product of a large international team

Henry N. Chapman^{1,2}, Petra Fromme³, Anton Barty¹, Thomas A. White¹, Richard A. Kirian⁴, Andrew Aquila¹, Mark S. Hunter³, Joachim Schulz¹, Daniel P. DePonte¹, Uwe Weierstall⁴, R. Bruce Doak⁴, Filipe R.N.C. Maia⁵, Andrew Martin¹, Ilme Schlichting^{6,7}, Lukas Lomb⁷, Nicola Coppola¹, Robert L. Shoeman⁷, Sascha Epp^{6,8}, Robert Hartmann⁹, Daniel Rolles^{6,7}, Artem Rudenko^{6,8}, Lutz Foucar^{6,7}, Nils Kimmel¹⁰, Georg Weidenspointner^{11,10}, Peter Holl⁹, Mengning Liang¹, Miriam Barthelmess¹², Carl Caleman¹, Sébastien Boutet¹³, Michael J. Bogan¹⁴, Jacek Krzywinski¹³, Christoph Bostedt¹³, Saša Bajt¹², Lars Gumprecht¹, Benedikt Rudek^{6,8}, Benjamin Erk^{6,8}, Carlo Schmidt^{6,8}, André Hömke^{6,8}, Christian Reich⁹, Daniel Pietschner¹⁰, Lothar Strüder^{6,10}, Günther Hauser¹⁰, Hubert Gorke¹⁵, Joachim Ullrich^{6,8}, Sven Herrmann¹⁰, Gerhard Schaller¹⁰, Florian Schopper¹⁰, Heike Soltau⁹, Kai-Uwe Kühnel⁸, Marc Messerschmidt¹³, John D. Bozek¹³, Stefan P. Hau-Riege¹⁶, Matthias Frank¹⁶, Christina Y. Hampton¹⁴, Raymond Sierra¹⁴, Dmitri Starodub¹⁴, Garth J. Williams¹³, Janos Hajdu⁵, Nicusor Timneanu⁵, M. Marvin Seibert⁵, Jakob Andreasson⁵, Andrea Rocker⁵, Olof Jönsson⁵, Stephan Stern¹, Karol Nass², Robert Andritschke¹⁰, Claus-Dieter Schröter⁸, Faton_Krasniqi^{6,7}, Mario Bott⁷, Kevin E. Schmidt⁴, Xiaoyu Wang⁴, Ingo Grotjohann³, James Holton¹⁷, Stefano Marchesini¹⁷, Sebastian Schorb¹⁸, Daniela Rupp¹⁸, Marcus Adolph¹⁸, Tais Gorkhover¹⁸, Martin Svenda⁵, Helmut Hirsemann¹², Guillaume Potdevin¹², Heinz Graafsma¹², Björn Nilsson¹², and John C. H. Spence⁴

- 1. Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- 2. University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
- 3. Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 USA.
- 4. Department of Physics, Arizona State University, Tempe, Arizona 85287 USA.
- 5. Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden.
- 6. Max Planck Advanced Study Group, Center for Free Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany.
- 7. Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany.
- 8. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.
- 9. PNSensor GmbH, Otto-Hahn-Ring 6, 81739 München, Germany.
- 10. Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany.
- 11. Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany.
- 12. Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.
 - 13. LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road. Menlo Park, CA 94025, USA.
 - 14. PULSE Institute and SLAC National Accelerator Laboratory, 2575 Sand Hill Road. Menlo Park, CA 94025, USA.
 - 15. Forschungszentrum Jülich, Institut ZEL, 52425 Jülich, Germany.
 - 16. Lawrence Livermore National Laboratory, 7000 East Avenue, Mail Stop L-211, Livermore, CA 94551, USA.
 - 17. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
 - 18. Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany

X-ray sources have developed at a staggering pace since their discovery in 1895

Some great moments in X-ray science

The number of solved protein structures is now increasing linearly with time

The bulk of protein structures have been solved using X-ray crystallography

X-ray crystallography requires large, well ordered crystals to overcome radiation damage

>52,684 PDB entries
but only
~10,000 distinct structures
114 integral membrane proteins

- The bottleneck is in growing good crystals
- Membrane proteins are especially important (eg: for drug delivery)
- Grand challenge:

 Can we revolutionise molecular biology by imaging isolated molecules?

X-ray crystallography is powerful, but growing the crystals is often difficult

X-ray free-electron lasers may enable atomic-resolution imaging of macromolecules without the need to grow large crystals

Single particle imaging at LCLS

Our diffraction camera can measure forward scattering close to the direct soft-X-ray FEL beam

The VUV-FEL diffraction experiment employs a unique camera to measure forward scattering with high SNR

Sasa Bajt, Eberhard Spiller, and Jennifer Alameda

GRADED MULTILAYER MIRROR:

Si, Mo, and B_4C layers, period graded laterally. Variation matches angle of incidence (30° to 60°) to maintain Bragg condition for $\lambda = 32$ nm. Reflectivity: 45% for 32 nm pulses.

The mirror protects the CCD and works as a

- (i) bandpass filter (bandwidth = 9 nm at 45°)
- (ii) filter for stray light (1% off-axis reflectivity)
- (iii) low-scatter beam-stop

We performed single particle imaging of viruses in the CAMP instrument at LCLS

We have performed experiments in the CAMP instrument

Sascha Epp¹, Robert Hartmann¹,², Daniel Rolles¹, Artem Rudenko¹, Lutz Foucar¹, Benedikt Rudek¹, Benjamin Erk¹, Carlo Schmidt¹, André Hömke¹, Nils Kimmel², Christian Reich², Günther Hauser², Daniel Pietschner², Peter Holl², Hubert Gorke³, Helmut Hirsemann⁴, Guillaume Potdevin⁴, Tim Erke⁴, Jan-Henrik Mayer⁴, Heinz Graafsma⁴, Michael Matysek⁵, Sebastian Schorb⁶, Daniela Rupp⁶, Marcus Adolph⁶, Tais Gorkhover⁶, Christoph Bostedtⁿ, John Bozekⁿ, Marc Messerschmidtⁿ, Joachim Schulz⁴, Lars Gumprecht⁴, Andrew Aquila⁴, Nicola Coppola⁴, Frank Filsinger⁶, Kai-Uwe Kühnel⁶, Christian Kaiser⁶, Claus-Dieter Schröter⁶, Robert Moshammer⁶, Faton Krasniqi¹, Simone Techert¹,¹⁰, Georg Weidenspointer², Robert L. Shoeman¹¹, Ilme Schlichting¹,¹¹, Lothar Strüder¹,², Joachim Ullrich¹,⁰

Experiments were performed in the CAMP chamber on the AMO beamline at LCLS

Imaging experiments at LCLS generate large volumes of data

Data rate:
4 MB/image
430 GB/hr (30 Hz)
1.7 TB/hr (120 Hz)

Feb 2011: 120 Hz 200 TB data... >20,000,000 images

High-speed area detectors are essential for LCLS imaging experiments

The pnCCD enables direct detection at X-ray wavelengths; central hole allows the direct beam to pass through

1024x1024 pixels
pixel size: 75 x 75 μm²
active area 60 cm²
frame rate 125-900 Hz
single-photon resolution Δ E=50/80eV @ 800/2000eV
Q.E. \geq 90 % from 0.4 to 10 keV
operating range 0.1 < E < 24 keV

The LCLS beam easily cuts through stainless steel

An accidental direct hit on the pnCCD at full power drilled straight through the detector

Amazingly, most of the detector remained useable despite the direct hit

Georg Weidenspointer, Robert Hartmann, MPG-HLL

Proc SPIE 8070 (May 2011)

Clear diffraction is measured from individual mimivirus

We achieved an unprecedented 43% hit rate using an aerosol injector

1.2 MILLION HITS on viruses in ~36 hours of beam time (7.7% assuming 100% up-time)

Sample concentration: ≤1012 particles/ml

Mimivirus diffraction from LCLS reconstructs in 2D

Diffraction from individual Mimivirus can easily saturate the detector at low resolution

High intensity regions can overload readout channels

Strange drop in signal

Resolution is limited by dynamic range when objects must be imaged with a single shot

We can assemble individual snapshots in 3D

We performed protein nanocrystallography at room temperature in a flowing water microjet

The cspad pixel array detector was almost completely populated

https://confluence.slac.stanford.edu/display/PCDS/CSPad+detector

https://confluence.slac.stanford.edu/display/PCDS/CSPad+detector

SCIENCE

SCIENCE

https://confluence.slac.stanford.edu/display/PCDS/CSPad+detector

Single photon events produce about 8 ADU counts (at 8 keV)

The offset on each pixel fluctuates over time

Mean = 1213 ADU Std dev = 4.2 ADU 3-sigma = 12.7 ADU

Distribution of dark pixel values looks roughly like a normal distribution

Mean = 1213 ADU Std dev = 4.2 ADU 3-sigma = 12.7 ADU

Offsets on individual ASICS vary with total signal (!)

The first hard X-ray nanocrystal experiments were performed in the CXI instrument in February 2011

Submicron water jets are produced using a gas dynamic virtual nozzle

Neutral drops do not disperse Droplets triggered by piezo Flow alignment possible Water acts as a tamper Sub-micron drops achievable

Dan DePonte (CFEL), Bruce Doak, Uwe Weierstall, John Spence (ASU)

Nanocrystal diffraction gives rise to separated bright peaks, which must be distinguished and quantified

Sum of all frames is dominated by water ring background

LCLS pulses: 2,292,468

Acquisition time: 19,103 sec

(5 hr 18 min)

Photon energy: 9.4 keV

Ice gives rise to strong diffraction peaks on the detector

FEL pulses: 4,293

Acquisition time: 35 seconds

Photon energy: 9.4 keV

35 sec of ice delivered roughly the same local dose as 30 minutes of data collection

Dead pixels accumulate during the course of the experiment

Strong diffraction from accidentally forming ice can be very damaging to the detector

Death of an ASIC Frame 1/4

Frame I: Feb2I_r0427_I5I008_c4a4

Death of an ASIC Frame 2/4

Frame 2: Feb21_r0427_151008_c4a7

Death of an ASIC Frame 3/4

Frame 3: Feb2I_r0427_I5I008_c4aa

Death of an ASIC Frame 4/4

Accidents can happen: radiation dose event whilst moving hardware in the chamber

Our processing pipeline is an exercise in data volume reduction

Automated high volume image processing is essential (reliable background correction, automatic identification of useful data)

My data must be somewhere here....

600x 3TB hard drives

Scalable to over 13,440 HDDs (over 10,000 TB formatted capacity)

X-ray free-electron lasers may enable atomic-resolution imaging of macromolecules without the need to grow large crystals

Moving to longer wavelengths increases the number of detected photons at the expense of spatial resolution

Ultrafast coherent imaging requires integrating detectors that can read out a full frame on each pulse

Heterogeneous objects

Reconstruct unique objects
500 eV - 2 keV

No averaging:
All data in a single shot
High dynamic range

Single molecules viruses, etc

Average weak signal 2 - 8 keV

Very weak:
Must average many shots
Single photon discrimination

Protein nanocrystals

Index Bragg peaks 6-12 keV

Bright, isolated peaks High dynamic range

Our ideal detector must satisfy many constraints

Property	Why?
Pixel arrays 2k x 2k or more (1k x 1k minimum)	Need to resolve fine diffraction features
Actual pixel size not critical	Detector must fit in facility or vacuum vessel
Readout at facility repetition rate (LCLS: 120 Hz, XFEL: ~3000/bunch)	Each pulse creates a unique event
Dynamic range >10 ⁴	Highly varying signal intensity
Low noise, single photon detection	Signals can be weak at high resolution
Stable pixel positions (<1/10 pixel)	Location of peaks need to be well defined
Photon integrating (not photon counting)	Multiple photons/pixel all come in <100 fs
Saturation is well controlled	Need to separate adjacent strong peaks
Correctable and well characterised artifacts	Robust background subtraction essential
Reliable, works when needed	Beamtime is very expensive
Replaceable modules	Radiation damage is a concern

This work was the product of a large international team

Henry N. Chapman^{1,2}, Petra Fromme³, Anton Barty¹, Thomas A. White¹, Richard A. Kirian⁴, Andrew Aquila¹, Mark S. Hunter³, Joachim Schulz¹, Daniel P. DePonte¹, Uwe Weierstall⁴, R. Bruce Doak⁴, Filipe R.N.C. Maia⁵, Andrew Martin¹, Ilme Schlichting^{6,7}, Lukas Lomb⁷, Nicola Coppola¹, Robert L. Shoeman⁷, Sascha Epp^{6,8}, Robert Hartmann⁹, Daniel Rolles^{6,7}, Artem Rudenko^{6,8}, Lutz Foucar^{6,7}, Nils Kimmel¹⁰, Georg Weidenspointner^{11,10}, Peter Holl⁹, Mengning Liang¹, Miriam Barthelmess¹², Carl Caleman¹, Sébastien Boutet¹³, Michael J. Bogan¹⁴, Jacek Krzywinski¹³, Christoph Bostedt¹³, Saša Bajt¹², Lars Gumprecht¹, Benedikt Rudek^{6,8}, Benjamin Erk^{6,8}, Carlo Schmidt^{6,8}, André Hömke^{6,8}, Christian Reich⁹, Daniel Pietschner¹⁰, Lothar Strüder^{6,10}, Günther Hauser¹⁰, Hubert Gorke¹⁵, Joachim Ullrich^{6,8}, Sven Herrmann¹⁰, Gerhard Schaller¹⁰, Florian Schopper¹⁰, Heike Soltau⁹, Kai-Uwe Kühnel⁸, Marc Messerschmidt¹³, John D. Bozek¹³, Stefan P. Hau-Riege¹⁶, Matthias Frank¹⁶, Christina Y. Hampton¹⁴, Raymond Sierra¹⁴, Dmitri Starodub¹⁴, Garth J. Williams¹³, Janos Hajdu⁵, Nicusor Timneanu⁵, M. Marvin Seibert⁵, Jakob Andreasson⁵, Andrea Rocker⁵, Olof Jönsson⁵, Stephan Stern¹, Karol Nass², Robert Andritschke¹⁰, Claus-Dieter Schröter⁸, Faton_Krasniqi^{6,7}, Mario Bott⁷, Kevin E. Schmidt⁴, Xiaoyu Wang⁴, Ingo Grotjohann³, James Holton¹⁷, Stefano Marchesini¹⁷, Sebastian Schorb¹⁸, Daniela Rupp¹⁸, Marcus Adolph¹⁸, Tais Gorkhover¹⁸, Martin Svenda⁵, Helmut Hirsemann¹², Guillaume Potdevin¹², Heinz Graafsma¹², Björn Nilsson¹², and John C. H. Spence⁴

- 1. Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- 2. University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
- 3. Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 USA.
- 4. Department of Physics, Arizona State University, Tempe, Arizona 85287 USA.
- 5. Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden.
- 6. Max Planck Advanced Study Group, Center for Free Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany.
- 7. Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany.
- 8. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.
- 9. PNSensor GmbH, Otto-Hahn-Ring 6, 81739 München, Germany.
- 10. Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany.
- 11. Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany.
- 12. Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.
 - 13. LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road. Menlo Park, CA 94025, USA.
 - 14. PULSE Institute and SLAC National Accelerator Laboratory, 2575 Sand Hill Road. Menlo Park, CA 94025, USA.
 - 15. Forschungszentrum Jülich, Institut ZEL, 52425 Jülich, Germany.
 - 16. Lawrence Livermore National Laboratory, 7000 East Avenue, Mail Stop L-211, Livermore, CA 94551, USA.
 - 17. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
 - 18. Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany

