Imaging Analog Hadron Calorimetry with Scintillators and SiPMs

Frank Simon
Max-Planck-Institut für Physik
Excellence Cluster ‘Universe’

DESY Joint Instrumentation Seminar
June 24, 2011
Why do we care?

- Hadronic calorimeters are mainly used to measure jets: The final product of quarks and gluons created in elementary particle reactions

Every modern high energy physics detector has one - Why are we not satisfied with what we have? Why do we want to do better?
Why do we care?

- Hadronic calorimeters are mainly used to measure jets: The final product of quarks and gluons created in elementary particle reactions.

Every modern high energy physics detector has one - Why are we not satisfied with what we have? Why do we want to do better?

“Forscher rätseln über neue Naturkraft”
- Spiegel Online, April 7, 2011

http://www.spiegel.de/wissenschaft/natur/0,1518,755597,00.html

Why do we care?

- Hadronic calorimeters are mainly used to measure jets: The final product of quarks and gluons created in elementary particle reactions.

Every modern high energy physics detector has one - Why are we not satisfied with what we have? Why do we want to do better?

“Forscher rätseln über neue Naturkraft”
- Spiegel Online, April 7, 2011

http://www.spiegel.de/wissenschaft/natur/0,1518,755597,00.html

... imagine you had a factor 2 to 3 better resolution: could make the difference between puzzling observations and hard answers!

Hadronic Calorimetry in Particle Physics

• Calorimeters measure the energy of particles by total absorption

• Hadrons are challenging: Large volumes & dense materials needed
 • Characteristic length scale given by interaction length: typically $\sim 100 \, \text{g/cm}^2$:
 ‣ Hadron calorimeters are always sampling calorimeters:
 Alternating layers of dense absorbers and active elements

• Hadronic showers have a rich structure: Needs a versatile detection medium
• Tower-wise readout: light from many layers of plastic scintillators is collected in one photon detector (typically PMT)
O(10k) channels for full detectors
• Tower-wise readout: light from many layers of plastic scintillators is collected in one photon detector (typically PMT) \(O(10k) \) channels for full detectors

• Extreme granularity to see shower substructure: small detector cells with individual readout for Particle Flow \(O(10M) \) channels for full detectors
Present Hadron Calorimeters ... And Dreams

- Tower-wise readout: light from many layers of plastic scintillators is collected in one photon detector (typically PMT) O(10k) channels for full detectors

- Extreme granularity to see shower substructure: small detector cells with individual readout for Particle Flow O(10M) channels for full detectors

With PFA, this provides the factor 2 to 3 improvement we are looking for!
Overview

- The first Imaging Calorimeter: The CALICE analog HCAL
 - Making it possible: Scintillator cells with SiPM readout
 - Performance & Results

- Under the Hood
 - Calibration techniques
 - New ideas for scintillator tiles with SiPMs

- Pushing further: The 4th Dimension
 - The T3B Experiment: First glimpse at the time structure of showers
The First Imaging Calorimeter
Photodetectors for Imaging Calorimeters

- Bringing the light from many small cells out of the detector is prohibitive: Fibers use up way too much space!

 - Need a light detector directly on the scintillator cell
 - Compact device with low power consumption
 - Insensitive to magnetic fields (the calorimeter usually sits inside a multi-T field!)

The tool of choice: Silicon Photomultipliers

Array of small APDs operated in Geiger mode:
Gain $10^5 - 10^6$

All pixels combined into one signal line:
Output proportional to number of fired pixels

Single photon detector capability
Combining SiPMs with Plastic

- Active medium of choice: Plastic scintillator
 - Cheap, easy to machine, sensitive to charged particles and neutrons, ...

Typical emission spectrum of plastic scintillator:
Maximum in the violet / blue spectral region 400 nm - 450 nm
Combining SiPMs with Plastic

- Active medium of choice: Plastic scintillator
 - Cheap, easy to machine, sensitive to charged particles and neutrons, ...

Typical emission spectrum of plastic scintillator:
Maximum in the violet / blue spectral region 400 nm - 450 nm

First generation SiPMs:
Sensitivity maximum
~ 550 nm (green)

NIM A563, 368 (2006)
Combining SiPMs with Plastic

- Active medium of choice: Plastic scintillator
 - Cheap, easy to machine, sensitive to charged particles and neutrons, ...

Typical emission spectrum of plastic scintillator:
Maximum in the violet / blue spectral region 400 nm - 450 nm

First generation SiPMs:
Sensitivity maximum
~ 550 nm (green)

Wavelength-shifter needed!

NIM A563, 368 (2006)
Adding Scintillators

- Plastic scintillator tile, with a wavelength shifting fiber in a machined groove
 5 mm thick, 3 x 3 cm2
- Photon detector (Silicon Photomultiplier)
 coupled to the WLS fiber
Adding Scintillators

- Plastic scintillator tile, with a wavelength shifting fiber in a machined groove 5 mm thick, 3 x 3 cm2
- Photon detector (Silicon Photomultiplier) coupled to the WLS fiber

- ~ 200 cells (larger size on the outside for cost reason) make up one 1 m2 layer
Turning it into a Calorimeter

- Put active elements between passive absorbers
 - ~ 20 mm steel in total per layer
 - 38 layers total: 7602 channels
- Add readout electronics, data acquisition, calibration system ...
Turning it into a Calorimeter

• Put active elements between passive absorbers
 ~ 20 mm steel in total per layer
 38 layers total: 7602 channels

• Add readout electronics, data acquisition, calibration system ...

absorbers with active layers
Turning it into a Calorimeter

- Put active elements between passive absorbers
 ~ 20 mm steel in total per layer
 38 layers total: 7602 channels
- Add readout electronics, data acquisition, calibration system ...

absorbers with active layers
front-end electronics
Turning it into a Calorimeter

• Put active elements between passive absorbers
 ~ 20 mm steel in total per layer
 38 layers total: 7602 channels

• Add readout electronics, data acquisition, calibration system ...

absorbers with active layers

front-end electronics

data acquisition
Turning it into a Calorimeter

• Put active elements between passive absorbers
 ~ 20 mm steel in total per layer
 38 layers total: 7602 channels

• Add readout electronics, data acquisition, calibration system ...

absorbers with active layers
front-end electronics
data acquisition
 calibration system
... and putting it into Beam!

- CALICE AHCAL constructed in 2005/2006, beam tests in various configurations at DESY, CERN and Fermilab every year since then
CALICE Analog HCAL: Beautiful Performance

• The first large-scale use of silicon photomultipliers - and the first imaging hadronic calorimeter!

A rich data set for detailed studies of hadronic showers: Validation of simulations, better understanding of underlying physics

Unprecedented possibilities!
CALICE Analog HCAL: Beautiful Performance

- The first large-scale use of silicon photomultipliers - and the first imaging hadronic calorimeter!

→ Shower start point: Study shower properties without fluctuations of initial interaction

A rich data set for detailed studies of hadronic showers: Validation of simulations, better understanding of underlying physics

Unprecedented possibilities!
CALICE Analog HCAL: Beautiful Performance

- The first large-scale use of silicon photomultipliers - and the first imaging hadronic calorimeter!

A rich data set for detailed studies of hadronic showers: Validation of simulations, better understanding of underlying physics

Unprecedented possibilities!

- Shower start point: Study shower properties without fluctuations of initial interaction
- Transverse shower profile: Crucial for shower separation in PFA
CALICE Analog HCAL: Beautiful Performance

- The first large-scale use of silicon photomultipliers - and the first imaging hadronic calorimeter!

- Shower start point: Study shower properties without fluctuations of initial interaction
- Transverse shower profile: Crucial for shower separation in PFA
- Longitudinal shower profile: Depth of calorimeter, leakage at high energies,...

A rich data set for detailed studies of hadronic showers: Validation of simulations, better understanding of underlying physics

Unprecedented possibilities!
• The first large-scale use of silicon photomultipliers - and the first imaging hadronic calorimeter!

A rich data set for detailed studies of hadronic showers: Validation of simulations, better understanding of underlying physics
Unprecedented possibilities!

⇒ Shower start point: Study shower properties without fluctuations of initial interaction
⇒ Transverse shower profile: Crucial for shower separation in PFA
⇒ Longitudinal shower profile: Depth of calorimeter, leakage at high energies,...
⇒ Shower substructure: Detailed information about hadronic interactions
- The first large-scale use of silicon photomultipliers - and the first imaging hadronic calorimeter!

A rich data set for detailed studies of hadronic showers: Validation of simulations, better understanding of underlying physics

Unprecedented possibilities!

- Shower start point: Study shower properties without fluctuations of initial interaction
- Transverse shower profile: Crucial for shower separation in PFA
- Longitudinal shower profile: Depth of calorimeter, leakage at high energies, ...
- Shower substructure: Detailed information about hadronic interactions
- Energy and energy density: Improved resolution with software compensation
The Things you can do... Comparisons to MC

- Comparisons to MC: Understanding shower components

- Provides insight into inner workings of simulations: Which parts work well, which need improvement?
The Things you can do: Shower Substructure

- Unprecedented resolution provides a look deep into the substructure of hadronic showers:
 - Resolution of individual MIP-like particles
- Newer simulation codes can reproduce the observations: Builds trust in the Geant4 approach... and in PFA performance studies!
The Things you can do: Energy Resolution

- The primary performance criterion for a calorimeter: Energy resolution
- For hadrons, it is a tough business:

![Diagram of energy resolution in calorimetry with scintillators and SiPMs](image-url)
The Things you can do: Energy Resolution

- The primary performance criterion for a calorimeter: Energy resolution
- For hadrons, it is a tough business:

 EM component: energy (almost) completely converted into charged particles, no losses due to particle mass, ...
The Things you can do: Energy Resolution

• The primary performance criterion for a calorimeter: Energy resolution
• For hadrons, it is a tough business:

 EM component: energy (almost) completely converted into charged particles, no losses due to particle mass, ...

 had. component: energy losses due to particle mass, binding energy, delayed emission, ...

 absorber

 electromagnetic component

 heavy frac
The Things you can do: Energy Resolution

• The primary performance criterion for a calorimeter: Energy resolution

• For hadrons, it is a tough business:

 - EM component: energy (almost) completely converted into charged particles, no losses due to particle mass, ...
 - had. component: energy losses due to particle mass, binding energy, delayed emission, ...

• The challenge:

 - Typically, the response to the em component is larger than to the hadronic component (missing energy in hadronic case), “non-compensation”

 - Large event to event fluctuations between the components

- Limited energy resolution of hadronic calorimeters!
The Things you can do: Energy Resolution

• Ways to improve the resolution:

• Increase response to hadronic component:
 Sensitivity to neutrons provided by hydrogenous detection medium
 but: strict requirements on absorber to active medium ratios, longitudinal uniformity,...
The Things you can do: Energy Resolution

- Ways to improve the resolution:

 - Increase response to hadronic component:
 Sensitivity to neutrons provided by hydrogenous detection medium
 but: strict requirements on absorber to active medium ratios, longitudinal uniformity,…

 - Software compensation:
 Exploit detector granularity to detect topological differences between components
 Weight energy deposits according to local energy density or overall shower density
Energy Reconstruction & Software Compensation

- Software compensation in the CALICE analog HCAL: Two techniques
 - Local: use energy content of each cell
 - Global: use shower properties - number of cells above and below thresholds

Resolution of $45\%/\sqrt{E}$ with small constant term for pions **in data**
Linear energy reconstruction within 1.5% over the full energy range from 10 GeV to 80 GeV

20% improvement of resolution with software compensation
Energy Reconstruction & Software Compensation

- Software compensation in the CALICE analog HCAL: Two techniques
 - Local: use energy content of each cell
 - Global: use shower properties - number of cells above and below thresholds

Resolution of $45%/\sqrt{E}$ with small constant term for pions *in data*
Linear energy reconstruction within 1.5% over the full energy range from 10 GeV to 80 GeV

20% improvement of resolution with software compensation

PFA calorimeters can also be pretty good hadronic calorimeters!
Under the Hood:
Calibration, Scintillator Tiles & New Ideas
From Signals to Results

• Several calibration levels applied
 • Pushing far beyond the needs of a hadronic calorimeter to fully understand imaging calorimeters with SiPM readout
From Signals to Results

- Several calibration levels applied
 - Pushing far beyond the needs of a hadronic calorimeter to fully understand imaging calorimeters with SiPM readout

- Auto-calibration feature of SiPMs: Response to individual photons can be clearly identified: Simple gain determination possible
 - In CALICE: Low-intensity LED light coupled to every cell, high gain of front-end electronics

Knowing the gain allows to convert an observed signal into a number of photons: Crucial for saturation corrections
From Signal to Results

- Calibrating the response of each cell to particles:
 - Setting the overall calibration scale
 - Cell-to-cell intercalibration
Correcting Saturation

- The number of pixels on the SiPMs is finite: The number of photons that can be detected simultaneously (meaning within a few ns) is limited
- Leads to saturation for high-amplitude signals

![Graph showing saturation correction](image)
Correcting Saturation

• The number of pixels on the SiPMs is finite: The number of photons that can be detected simultaneously (meaning within a few ns) is limited
• Leads to saturation for high-amplitude signals

![Graph showing saturation correction](image)

Mostly an issue for electromagnetic showers...
Correcting Saturation

- The number of pixels on the SiPMs is finite: The number of photons that can be detected simultaneously (meaning within a few ns) is limited.
- Leads to saturation for high-amplitude signals.

Saturation correction works well for electromagnetic showers:
No performance reduction for hadrons!
Fine Details - Spreads & Variations

- Matching of fiber to SiPM is tricky: Slight misalignments lead to reduced number of effective pixels - Affects saturation correction
Fine Details - Spreads & Variations

- Matching of fiber to SiPM is tricky: Slight misalignments lead to reduced number of effective pixels - Affects saturation correction

- ~ 30% RMS variation of signal (here for penetrating electrons from 90Sr source): A variety of factors - Taken care of by MIP calibration
Do Cell-to-Cell Spreads Matter?

- High granularity here comes in in our favor: Typically 10 cells / GeV
 Variations average out

Study in full simulations with PFA event reconstruction:
It takes more than 50% RMS cell-to-cell variations to take a hit in jet energy resolution.
Requirement here is not set by resolution, but by possibility for calibrating in groups
Expected requirement: ~ ± 10%
New Ideas for the Next Generation

- The wavelength-shifting fiber in the scintillator cells comes at a price:
 - increased mechanical complexity: Fiber needs to be inserted into every tile
 - reduced tolerances: Alignment of fiber end to SiPM critical: Decides light yield of cell and saturation level
 - Slower response: Additional time constant from WLS
New Ideas for the Next Generation

- The wavelength-shifting fiber in the scintillator cells comes at a price:
 - increased mechanical complexity: Fiber needs to be inserted into every tile
 - reduced tolerances: Alignment of fiber end to SiPM critical: Decides light yield of cell and saturation level
 - Slower response: Additional time constant from WLS

♫ Ideally, we would like to get rid of the fiber - and we can, now that blue / near-UV sensitive SiPMs exist
Testing Scintillator Tiles in the Lab

- Crucial: Capability to test performance of scintillator cells with SiPMs on the bench
- Setup with 90Sr source, allows scanning over the active tile area

Performance criteria:
- Overall signal amplitude ("light yield")
- Uniformity of response over active area
- Key requirement: Select only penetrating electrons (close approximation of MIPs)
- Trigger scintillator below tile under study

GEANT4 simulations, 5 mm scintillator
Fiber Benefits: Uniformity

- The fiber does not only shift the wavelength - it also collects light and guides it to the SiPM by total internal reflection:
 Provides uniform response over the tile surface

For this test: tile read out with MPPC - sensitivity not well matched to fiber emission
Going Fiberless: A Challenge

• Just putting a SiPM to a piece of scintillator does not work:

- Strategy for improvement:
 - Reduce amount of scintillating material close to photon sensor
 - Diffuse light to reduce spatial dependence
 - Optimize light yield
Going Fiberless: A Challenge

• Just putting a SiPM to a piece of scintillator does not work:

• Strategy for improvement:
 • Reduce amount of scintillating material close to photon sensor
 • Diffuse light to reduce spatial dependence
 • Optimize light yield

After many iterations:

NIM A620, 196 (2010)
Fiberless Coupling: Reproducibility

- Comparing performance of a small sample of tiles (16 tiles)
- Each tile read out with a MPPC-50C (thanks Erika!)

All photon sensors adjusted to the same gain (slightly higher than specs)
Spread likely due to (automated) measurement procedure
Fiberless Coupling: Reproducibility

- Comparing performance of a small sample of tiles (16 tiles)
 - Each tile read out with a MPPC-50C (thanks Erika!)
 All photon sensors adjusted to the same gain (slightly higher than specs)
 Spread likely due to (automated) measurement procedure

Tile response measured with ^{90}Sr source, extracted with Landau + Gauss fit
Fiberless Coupling: Reproducibility

- Comparing performance of a small sample of tiles (16 tiles)
 - Each tile read out with a MPPC-50C (thanks Erika!)

All photon sensors adjusted to the same gain (slightly higher than specs)
Spread likely due to (automated) measurement procedure

Tile response measured with 90Sr source, extracted with Landau + Gauss fit

10% RMS spread observed for sample: corresponds to expected precision requirement
Fiberless Coupling: Scalability?

- An open question: How can we produce millions of cells needed for a complete collider detector?
 - Clear advantage for fiberless design: Should be easier to fabricate

- Designs suited for molding show good uniformity and satisfactory signal amplitudes

- Next steps: Try it out!
 Need the right material, and a company who can do it... Ideas?
Fiberless Coupling: Scalability?

- An open question: How can we produce millions of cells needed for a complete collider detector?
 - Clear advantage for fiberless design: Should be easier to fabricate

- Designs suited for molding show good uniformity and satisfactory signal amplitudes

- Next steps: Try it out!
 Need the right material, and a company who can do it... Ideas?

- Additional issues: Coating of tiles
 - Possible solution: Al sputtering
 First tests revealed problems with oxidation due to discharged: needs further investigation
Pushing Further: The 4$^{\text{th}}$ Dimension
Setting the Stage: Hadron Calorimetry at CLIC

- CLIC: A 3 TeV e^+e^- linear collider
 The key CLIC feature: High Energy!
- 3 TeV energy means in principle up to 1.5 TeV jets

Shower containment and leakage is a crucial issue

- A (very) deep hadron calorimeter is needed
- Use compact absorbers to limit the detector radius: Tungsten a natural choice
Setting the Stage: Hadron Calorimetry at CLIC

- CLIC: A 3 TeV e^+e^- linear collider
 - The key CLIC feature: High Energy!
 - 3 TeV energy means in principle up to 1.5 TeV jets

Shower containment and leakage is a crucial issue

- A (very) deep hadron calorimeter is needed
- Use compact absorbers to limit the detector radius: Tungsten a natural choice

- Key challenge (linked to high energy and machine-specific issues): Background
 - $\gamma\gamma \rightarrow$ hadrons substantial:
 - ~ 12 hadrons/bunch crossing in the barrel region
 - (4 GeV / bunch crossing) [up to 50 hadrons / 50 - 60 GeV barrel + endcap + plug calorimeters]
 - extreme bunch crossing rate: every 0.5 ns
 - Very good time resolution in all detectors important to limit impact of background!
Hadronic Showers: Complex (Time) Structure

- Hadronic showers have a rich substructure:
Hadronic Showers: Complex (Time) Structure

- Hadronic showers have a rich substructure:
 - instantaneous, detected via energy loss of electrons and positrons in active medium
Hadronic Showers: Complex (Time) Structure

• Hadronic showers have a rich substructure:
 - Instantaneous component: charged hadrons detected via energy loss of charged hadrons in active medium
 - Delayed component: photons, neutrons, protons from nuclear de-excitation, detected via e^+e^-, momentum transfer to protons in hydrogenous active medium, energy loss, contributions from time of flight of low energy particles
Hadronic Showers: Complex (Time) Structure

- Hadronic showers have a rich substructure:
 - instantaneous component: charged hadrons detected via energy loss of charged hadrons in active medium
 - delayed component: photons, neutrons, protons from nuclear de-excitation, detected via e^+e^-, momentum transfer to protons in hydrogenous active medium, energy loss, contributions from time of flight of low energy particles

⚠ Importance of delayed component strongly depends on target nucleus
⚠ Sensitivity to time structure depends on the choice of active medium
Hadronic Showers: Complex (Time) Structure

- Hadronic showers have a rich substructure:
 - instantaneous, detected via energy loss of electrons and positrons in active medium
 - instantaneous component: charged hadrons detected via energy loss of charged hadrons in active medium
 - delayed component: photons, neutrons, protons from nuclear de-excitation, detected via e^+e^-, momentum transfer to protons in hydrogenous active medium, energy loss, contributions from time of flight of low energy particles

 Detector optimization and performance studies rely on Geant4: How well do the simulations reproduce the time structure of the response in the CLIC HCAL?

- Importance of delayed component strongly depends on target nucleus
- Sensitivity to time structure depends on the choice of active medium
T3B: An Experiment for a First Study of the Time Structure

- The CALICE Scintillator-Tungsten HCAL - A CLIC physics prototype
 - 30 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm^3) absorber (steel of AHCAL prototype replaced by Tungsten)
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)
T3B: An Experiment for a First Study of the Time Structure

- The CALICE Scintillator-Tungsten HCAL - A CLIC physics prototype
 - 30 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm³) absorber
 (steel of AHCAL prototype replaced by Tungsten)
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)

- T3B (Tungsten Timing Test Beam)
 - Goal: Measure the time structure of the signal within hadronic showers in a Tungsten calorimeter with scintillator readout
 - Use a (very) small number of scintillator cells, read those out with high time resolution
 - First test beam campaign: November 2010, CERN PS
 - Second campaign: Started this week at CERN SPS
T3B: An Experiment for a First Study of the Time Structure

- The CALICE Scintillator-Tungsten HCAL - A CLIC physics prototype
 - 30 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm³) absorber (steel of AHCAL prototype replaced by Tungsten)
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)

- T3B (Tungsten Timing Test Beam)
 - Goal: Measure the time structure of the signal within hadronic showers in a Tungsten calorimeter with scintillator readout
 - Use a (very) small number of scintillator cells, read those out with high time resolution
 - First test beam campaign: November 2010, CERN PS
 - Second campaign: Started this week at CERN SPS

⇒ First information on time structure, possibility for comparisons to Geant4, but: no complete “4D” shower reconstruction!
T3B Technology

• Scintillators and photon sensors:
 • Fast response - Use fiberless scintillator tiles
 • High light yield to provide sensitivity to small energy deposits
 - Use photon sensors with high PDE, limited dynamic range: MPPC-50C (400 pixels)

• Data acquisition:
 • Fast sampling to allow for single photon resolution: 1 GHz or more
 • Long acquisition window to provide sensitivity to late shower components: 2+ μs
 • High trigger rate: faster than CALICE AHCAL trigger, > few kHz
T3B Technology

- Scintillators and photon sensors:
 - Fast response - Use fiberless scintillator tiles
 - High light yield to provide sensitivity to small energy deposits
 - Use photon sensors with high PDE, limited dynamic range: MPPC-50C (400 pixels)

- Data acquisition:
 - Fast sampling to allow for single photon resolution: 1 GHz or more
 - Long acquisition window to provide sensitivity to late shower components: 2+ µs
 - High trigger rate: faster than CALICE AHCAL trigger, > few kHz

- Adopted solution for T3B: PicoScope 6403 (USB controlled oscilloscope)
 - 1.25 GHz sampling for 4 channels per unit
 - 1 GB buffer memory (shared between channels)
 - Burst trigger mode: Maximum rate determined by window length:
 ~ 500 kHz for 2µs acquisition window
The T3B Setup: Test Beams at CERN PS & SPS

- 15 3 x 3 cm² scintillator cells, sampling the radial extent of the shower beam axis through cell 0

435 mm
The T3B Setup: Test Beams at CERN PS & SPS

- 15 3 x 3 cm² scintillator cells, sampling the radial extent of the shower

Stand-alone system:
- Installed downstream of CALICE WHCAL, depth ~ 4 λ
- Calibration triggers on dark noise between spills
Synchronization with CALICE
- Triggered by CALICE trigger - common analysis possible in the future
Data Analysis - Technique

• For each channel, a complete waveform with 3000 samples (800 ps /sample) is saved
• Waveform decomposed into individual photon signals, using averaged 1 p.e. signals
 • Average 1 p.e. signal taken from calibration runs between spills, refreshed every 5 minutes: Continuous automatic gain calibration

• Reconstruction of the time of each photo-electron:
 Allows various different analyses

![Waveform Analysis](image-url)
First Results - Muons

- Energy of muons reconstructed in the central T3B tile
 - Full reconstruction with waveform decomposition
 - Response variations from cell to cell: 10% (from bench measurements)

- Two integration times: Short time window rejects a significant fraction of SiPM afterpulses (detailed investigations of other contributions ongoing)
First Results - Muon Timing

- Present analysis: determining the Time of First Hit
 - minimum of 8 p.e. (~ 0.4 MIP) within 9.6 ns

Time of First Hit for Muons:
- Response to instantaneous energy deposit

Muons from PS:
Energy a few GeV
First Results - Muon Timing

- Present analysis: determining the Time of First Hit
 - minimum of 8 p.e. (~ 0.4 MIP) within 9.6 ns

Time of First Hit for Muons:
- Response to instantaneous energy deposit
- Time resolution (including trigger): ~ 800 ps
- Consistent with simulations including time smearing

Muons from PS:
Energy a few GeV
First Results - Pion Data

- Data taken in CALICE WHCAL Testbeam at CERN PS
- Current analysis: Highest energy taken at PS - 10 GeV π^-
- Time of First Hit

Time of first hit:
Easy to define in data and MC without detailed treatment of
- afterpulsing
- time distribution of scintillator response
- photon travel
- ...

![Graph showing time of first hit data](Calice_T3B_Preliminary_Data_10GeV.png)
Time of First Hit in Simulations

- Simulations using smeared photon distributions
- Same analysis procedure as real data
- Two physics lists:
 - QGSP_BERT: LHC standard, used for CLIC detector studies
 - QGSP_BERT_HP: Variant with high precision neutron tracking
Data & Simulations - First Results

- QGSP_BERT shows a pronounced tail of late energy depositions
- Data agrees better with QGSP_BERT_HP - Reduced activity beyond 20 ns
Data & Simulations - First Results

Data consistently described by QGSP_BERT_HP
- QGSP_BERT deviates strongly

Compact Comparison:
Mean Time of First Hit
- calculated in a time window of 200 ns (-10 ns to 190 ns from maximum in tile 0)
Data & Simulations - First Results

- Data consistently described by QGSP_BERT_HP
 - QGSP_BERT deviates strongly

Compact Comparison:
Mean Time of First Hit
- calculated in a time window of 200 ns (-10 ns to 190 ns from maximum in tile 0)

- High precision neutron tracking or other means to suppress excessive late energy depositions necessary to describe observed time structure in T3B
Summary I

• For a new generation of colliders, we want a new generation of detectors:
 High granularity, paired with sophisticated algorithms promises unprecedented resolution

• Compact silicon-based photon sensors enable highly granular calorimeters with scintillators as active medium

• CALICE has 5 years of operational experience with a physics prototype
 • First large-scale use of SiPMs - Successful proof of concept
 • Good performance: A PFA calorimeter can be a very good HCAL as well!
 • Fantastic opportunities to study the details of hadronic showers:
 Unprecedented possibilities for the validation and improvement of simulation models
Summary II

• Detailed understanding of the characteristics of a SiPM calorimeter - often beyond what is needed to obtain good hadronic performance
 • Calibrations with muons & LEDs
 • Correction for saturation of photon sensors
 • Large sample studies of scintillator tiles and SiPMs

• Ideas for the next generation of detectors
 • Not discussed here: Technical prototype of CALICE: Compact, fully integrated readout electronics
 • Fiberless scintillator tiles: Fast response, good uniformity & reproducibility
 Need ideas for mass production!
Summary III / Outlook

- A versatile technology: With the right readout, the time structure of hadronic showers is accessible
 - First proof of concept measurements - Already a physics conclusion:
 The current default physics list in HEP, QGSP_BERT, has too much late energy deposit: Overestimation of needed integration time.
 High precision neutron tracking provides improved performance

- Upcoming opportunities:
 - Next generation electronics for the CALICE AHCAL:
 Time stamping for every channel - Potentially a full “4D-Calorimeter”
 - Currently taking data with Tungsten absorbers: A whole new game of shower model validations & detector studies
Summary III / Outlook

• A versatile technology: With the right readout, the time structure of hadronic showers is accessible
 • First proof of concept measurements - Already a physics conclusion: The current default physics list in HEP, QGSP_BERT, has too much late energy deposit: Overestimation of needed integration time. High precision neutron tracking provides improved performance

• Upcoming opportunities:
 • Next generation electronics for the CALICE AHCAL: Time stamping for every channel - Potentially a full “4D-Calorimeter”
 • Currently taking data with Tungsten absorbers: A whole new game of shower model validations & detector studies

... and who knows what other exciting ideas and projects come next!