The Upgrade of the Inner Tracker of the ATLAS experiment for the High-Luminosity LHC

Joint Instrumentation Seminar
04.12.2020

Susanne Kuehn, CERN
Overview

- The Phase-II Upgrade of the Large Hadron Collider and of the inner tracking detector of the ATLAS experiment
- Motivation and layout of the Inner Tracker (ITk) detector
- Concept, technology choices and results of prototyping of
 - the strip detector
 - the pixel detector
- Summary
Phase-II Upgrade of the Inner Tracker of the ATLAS Experiment - Susanne Kuehn

From LHC to HL-LHC

Proton-proton collisions with up to 14 TeV at higher intensity:

- Instantaneous nominal luminosity x5-7.5 → Increased particle densities
- Integrated luminosity x10 → Increased radiation damage
- Increase of overlapping proton-proton events (pile-up) from $<\mu> \sim 50$ now to $<\mu> \sim 200$

https://hilumilhc.web.cern.ch/
Upgrade Physics Goals

- **Improve Higgs boson precision measurements**
 - More precise measurements of Higgs boson couplings
 - Di-Higgs boson production
 - Study of Higgs boson self coupling

- **Vector Boson Scattering** and other precision SM measurements
 - VBS cross section

- **Search for New Physics**
 - Mass reach for new particle searches extends significantly, e.g. for stops to 1.2 TeV
 - Direct production of staus, stops, EW gauginos

Many challenges for reconstruction:

- High multiplicity events and highly boosted jets require improved granularity and resolution
- VBS/VBF forward jets: forward tracker for pile-up rejection by jet-vertex association
- Rare events: improve in coverage and reconstruction efficiency
Tracking detector for the ATLAS experiment

Requirements for the tracking detector

• Luminosity of up to $7.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

• On average 200 interactions per bunch crossing: keep occupancy at 1% level with highly granular detector

• High particle fluences
 • up to $1.3 \times 10^{16} \text{ n}_\text{eq}/\text{cm}^2$ and 900 MRad for the pixel detector
 • up to $1.6 \times 10^{15} \text{ n}_\text{eq}/\text{cm}^2$ and 70 MRad for the strip detector

• Low material budget

• Fast and reliable readout

• High charge collection efficiency

• High vertex and track position resolution

→ For Phase-II upgrade: new all-silicon tracker for the ATLAS experiment
Layout of the new Inner Tracker (ITk)

Silicon strip and pixel detector in 2 T magnetic field:

- 4 central strip layers and two endcaps with 6 disks each
 - n-in-p float zone sensors
 - ~18 k modules and ~234 k ASICs
 - ~ 60 million channels
 - Up to 640 Mbps per module
 - Total area about 165 m²

- 5 pixel layers in the central and forward sections
 - 3D and planar sensors
 - ~8.5 k hybrid pixel modules and ~34 k front-end chips
 - ~5 billion pixels
 - Up to 4x 1.28 Gbps per front-end chip
 - Total area about 13 m²
 - Inner two layers replaceable

Cooling with CO₂
Material estimate for ITk

Reduction of material by usage of
- CO₂ cooling with thin titanium pipes
- Thin silicon sensors
- Advanced powering: serial powering for pixels, DC-DC converters for strips
- Carbon structures for mechanical stability and mounting
Towards the realisation of the system
The concept of the ITk Strip Detector

- 4 barrel cylinders and 2 endcaps with 6 disks each
- **Large strip system compared to current Inner Detector**
 - ~10x channels
 - ~3x size
 - ~5x modules

- **Concept of modularity of components** which are designed for manufacturability and mass production from the beginning (industry standard design rules, simplified construction,…)
 - Assembly and testing at multiple sites
 - Simplifies final assembly
 - Earlier test of full system

One endcap will be assembled at DESY
Team heavily involved in described strip activities
Strip sensors and readout electronics

- n-in-p float-zone sensors with p-stop isolation and ~320 µm thickness
- Strip length 8-50 mm depending on region
- All sensors received from HPK for pre-production
- QA and QC methods exercised at production sites, e.g. bow verified and for prototypes within specifications
- Few sites already qualified for production

- Binary readout chip (130 nm CMOS) ABCStar with 256 channels, operated at 1.5 V
- Pre-production of ABCStar chips being tested with better single-event effects (SEE) tolerance
- Design of hybrid controller chip (HCC) technically challenging, optimization ongoing to resolve unexpected SEEs

Pre-production ABCStar

SEE Testing at TRIUMF

8 pre-production masks

Collecting Charge after proton, neutron and gamma irradiation, β-source tests after 80 min annealing at 60°C

ATLAS

Collected charge (keV)

Fluence (10¹⁴ n_eq cm⁻²)

A7 26 MeV Protons (500 V)
A7 Neutrons (500 V)
A7 70 MeV Protons (500 V)
A7 Pions (500 V)
A12A Neutrons (500 V)
A12A 70 MeV Protons (500 V)
A12A Bham 26 MeV Protons (500 V)
A12A Pions (500 V)
A12A KIT 26 MeV Protons (500 V)
A12A 800 MeV Protons (500 V)
A12M 70 MeV Protons (500 V)
A7 Pairs Neutrons (500 V)

ABCStar

Barrel hybrids with 10 FEs and HCC
Strip modules

• Several modules assembled and evaluated before and after irradiation to HL-LHC fluences

• During module assembly, the hybrids and power boards are glued directly to the sensor
 • Tooling finalized for mass production

• Module production site qualification about to start

• Some EC modules show higher noise → test with a new hybrid design and test on local supports
Module performance in beam test and irradiation

- Several successful test beam campaigns at DESY-II test beam facility of non-irradiated and irradiated star modules: Built with annealed sensors irradiated to max. expected fluence and X-ray irradiated hybrids

- Results show clear operating windows meeting >99% efficiency, <0.1% noise occupancy requirement

- Measured signal-to-noise ratio values above required value of 10 for all evaluated modules at foreseen bias voltages

- Further testbeams with irradiated pre-production modules foreseen
Strip local supports

- **Carbon-fibre composite structures** with co-cured copper **bus tapes** have **modules** glued on top of both sides with a stereo angle between both sides
- In central region (barrel): staves with 14 modules on each side
 - 392 staves in total
- In endcaps: petals with 9 modules on each side
 - 384 petals in both endcaps
- **End-of structure cards service the electrical to optical transmission** (lpGBT and VTRx+ links) and **to the outside world**: production and tests with optimized design ongoing

Petal with local flatness: 19 – 41 µm
Global flatness: 93=116 µm

Good thermal performance measured
System test of loaded local supports

- Various prototypes have been fabricated and tested for both stave and petal variants
- Loading of modules with gantry systems
- Electrical test of short strip stave with 5 modules

- Various prototypes have been fabricated and tested for both stave and petal variants
- Loading of modules with gantry systems
- Electrical test of short strip stave with 5 modules

Electrical tests of petal indicate good performance, some excess noise seen caused by grounding issue

Electrical tests after cool down to -30°C showed higher noise → solved by removal of AC-ground reference

Demonstrated multi-drop command/clock between HCCs/IpGBT and modules on stave have excellent performance
Integration of the strip detector

- Loaded local support structures (staves and petals) are end-insertable including cooling and cabling.

- For barrel: carbon cylinders for each layer in which staves are inserted. Tests with mock-ups ongoing.

- For endcaps: carbon wheels with blades for each disk mounted in endcap structure.

Tests with mock-ups progressing well.
Services of the strip detector

- Full chain defined and services purchased for larger system tests

<table>
<thead>
<tr>
<th>Service module</th>
<th>Cable Type II</th>
<th>Cable Type III</th>
<th>Cable Type IV</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>~1.5m</td>
<td>New</td>
<td>New</td>
<td>Reused</td>
<td></td>
</tr>
<tr>
<td>PP1</td>
<td>~15m</td>
<td>~30m</td>
<td>~90m</td>
<td>PP4</td>
</tr>
<tr>
<td>Stave/petal</td>
<td></td>
<td></td>
<td>USA15/US15</td>
<td></td>
</tr>
<tr>
<td>ITK</td>
<td></td>
<td></td>
<td>DAQ</td>
<td></td>
</tr>
</tbody>
</table>

- Services on the detector sorted in service modules

Barrel services

Mockup of services

EC cooling manifold ready for testing in CO$_2$ plant at CERN
The layout of the ITk Pixel detector

- Different sensors types and technologies depending on distance from interaction point
 - 3D-sensors in triplet assemblies (Layer 0), planar with 100 µm (L1), planar sensors with 150 µm thickness (L2, L3, L4)
 - Pixel size 50x50 µm^2 (L1-L4, rings of L0), 25x100 µm^2 (flat part of L0)

- Luminosity monitoring and beam abort modules recently added
- Fast readout with max. 1 MHz trigger rate
- Fast data transmission with up to six links of 1.28 Gbps (electrical) per lpGBT and VTRx+ link (optical) to FELIX readout
- Reduction of material by deploying serial powering and CO_2 cooling

modules ~8,500
FE chips ~ 34,000
~x 6 of current pixel detector in ATLAS
Planar pixel sensors and 3D pixel sensors

Thin n-in-p planar sensors
- Dies of 4x4 cm²
- 100/150 μm thick
- Bias voltage up to 600 V (at end of life-time)
- Signal: ~10000 e⁻ (~6000 e⁻ after HL-LHC dose)
- Market survey completed

3D sensors
- For innermost layer: \(1.3 \times 10^{16} \text{n}_{\text{eq}}/\text{cm}^2\) for 2000 fb⁻¹
- Dies of 2x2 cm², 150 μm thickness + 100-200 μm support wafer
- Pixel size of 25x100 μm² challenging for radiation hardness and only in part of L0 foreseen

Test beam result for 50x50 μm² planar module irradiated with 70 MeV protons to \(3 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2\)

- >97% efficiency at perpendicular track incidence
- Power consumption at the operational voltage: <10 mW/cm²
- Maximum operational voltage: 250 V
New pixel front-end chip: RD53 – ITkPixV1/2

RD53 Collaboration: joint R&D of ATLAS and CMS
ASIC: 65 nm with TSMC

- 4 data lines at 1.28 Gbps
- Low threshold ~600 e⁻
- Integrated shunt LDO
- Design power 0.7 W/cm², up to 8 A supply current for four-chip module
- Radiation hardness up to 500 MRads
- 154k pixels per chip, expecting up to 250 hits/chip/bunch crossing, 500 bc buffer

RD53A FE prototype (full width/half depth chip with 3 analogue FE) heavily investigated: Many results collected, show comparable performance within specifications
- Wafer probing set up
- Two readout systems for testing available
- Radiation damage depends on dose rate
- Proof-of-principle of operation in serial powering chain shown

ATLAS ITkPixV1 FE prototype
- Differential FE of RD53A FE plus few design changes e.g. under current and over voltage protection
- ATLAS chip submitted March 2020 and received June 2020
- All the tested functionalities are working as expected
- High digital current because of an issue in the ToT latches
- Refined version in preparation
Module concept for the pixel detector

- **Sensor and front-end electronics** connected to bare module with **high density bump bonding** (market survey to qualify several vendors about to finish)

- **Modules assembly** of single chip, two chips (duals) and four chips (quads) to one sensor and flex circuit boards

- **Irradiation study of glues and encapsulation materials**

→ Production of four-chip modules ongoing with RD53A chips with common tooling
→ Systematic evaluation of performance and production flow
Challenges for pixel modules

Disconnected bumps after thermal cycling of modules mainly caused by stress from copper in hybrid

- Linear and bump geometries studied in FEA models to analyze thermal stress
- Models predict number of cycles to failure like observed failures in FE-I4 modules

- Models predict: Survival of 120 thermal cycles for \(-55^\circ\text{C} \text{ to } 60^\circ\text{C}\) and 4000 for \(-45^\circ\text{C} \text{ to } 40^\circ\text{C}\) before failure compare to specification of 400 cycles

- Parylene coating of the module has a beneficial effect
- More studies ongoing

Thermal cycling of quads \((-55^\circ \text{C} \text{ – } 60^\circ \text{C})\):
IV ok after 2200 cycles but source tests show disconnected bumps after \(O(20)\) cycles (J. Grosse-Knetter)

- Black/red: full/smaller temperature range
- Solid circles: QC (x1/4)
- Solid sq.: bare (x1/2)
- Open sym.: DC-mod.

Thermal cycles on single chip FE-I4 module with 48 \(\mu\text{m}\) Cu on hybrid, with and without parylene coating (R. Plackett, L. Cunningham)
Powering of the pixel detector: serial powering

- **Powering modules serially with chains of up to 16 quad modules**
 - Reduced number of supply lines, less material
 - Less power dissipation on services than with parallel powering
 - Radiation hard on-chip shuntLDO allows regulation of voltage on chip
- Several HV lines per chain (at least 2 per SP-chain foreseen)
- Each module on different potential → AC coupling of data lines

The voltage drop on every module and the temperature on every module is monitored through an independent readout path with a monitoring chip

Serial powering:
- D. Bao Ta et al., NIM A557 (2006) 445-459
- L. Gonella et al., JINST 5 (2010) C12002
Powering of the pixel detector: serial powering

- **Constant current supplied and parallel distributed on one module to all front-ends**
 - 6-8 regulators in parallel operated: slope and offset of regulator determines module’s IV-curve
 - Input current to shuntLDO regulators can exceed the nominal load current by a factor of ~2 (shunt capability) → Powering chain preserved even if one or two FE chips on a four-chip module fail open → But impact on thermal performance of the module

- **About 1000 SP-chains, will validate the SP-chain concept up to a length of 16 modules**
- Challenging to optimize the choice of shuntLDO configuration in order to minimize total power dissipation while meeting all constraints (like same shuntLDO configuration for all quad modules)
- **Total power consumption (112 kW) within cooling budget**
- Regulators/periphery is warmest area inside FE, about 40-45% of power in periphery (10% of FE area) → Taken into account in detector design
Readout of the pixel detector: data transmission

- On-detector: **kapton/copper flexes** → Patch panel 0 → Twin-axial cables → Giga bit transmitter recovery chip (GBCR) → lpGBT and VTRx+ for aggregation → Optical fibres to readout PCs with FELIX readout boards

- Uplink sharing for all layers to reduce material (320 Mbps inter chip data transmission on the modules)

- Losses to be kept below 20 dB for FE-chip and GBCR including connectors, flexes and cable
- Studies for verification and prototyping heavily ongoing

Electrical signals at 1.28 Gbps over 6 m cables

Optical signals at >5.12 Gbps from the optoboard

L4 4MHz PP0 prototype
Verification of data transmission

- Developing system test with all elements
- Tested transmission chain with 1.28 Gpbs data rates using GBCRv1, which was optimized for 5.12 Gbps

Eye diagram over full chain:
- RD53 CDR + Flex + TwinAx + GBCR with pre-emphasis
- Jitter: ~50 ps, Eye opening: 250 mV

Further challenge:
- Routing of services since there are many and space is limited between layers

CAD of services in L0
CAD of services in L2 Barrel
Uni Berne and SLAC

Type-1 Envelope
Pixel local support components I

Principle: Structures from carbon foam with carbon fibre co-cured and modules attached

- Inner system

- Endcaps
Pixel local support components II

Principle: Structures from carbon-fibre composites with modules attached

- **Outer barrel layers**

 Functional longerons and inclined units with half rings

 80 cm truss structure, ~45 g/m

 Half layer with inclined units and longerons (services not shown)

- **Single and quad modules**
- **Layout differs in detector areas:** varying serial powering chain lengths and varying mechanical solutions to achieve high thermal and electrical performance for stable and safe operation

 → Validation in different prototypes
Results of thermal prototypes and simulations

- For outer barrel: longeron with 44 silicon heaters with embedded RTDs evaluated

- For endcap: half-ring with temp. sensors on silicon

- For inner: ring with temp. sensors on silicon

- Thermal FEA simulation

→ Evaluation of thermal performance and manufacturing variability ongoing

→ Initial results and simulations within thermal specifications: hottest spot on FE expected to be colder than 0°C at the end-of-lifetime

04.12.2020 Phase-II Upgrade of the Inner Tracker of the ATLAS Experiment - Susanne Kuehn
System tests with FE-I4 based prototypes

- **Outer barrel demonstrator program**
 - Short electrical 7-quad module structure
 - Long prototype with 4x8 dual modules and 2x7 quad modules → up to 120 FE-I4 ASICs
 - 6 SP-chains, currently 3 under evaluation

- **Endcap Ring-0**
 - CFRP + carbon foam half-ring with 12 quad modules loaded on top
 - Flexes for 2 SP-chains

→ Evaluation of many system aspects
→ Early practice run for design and integration

→ Performance comparable to standalone operation of modules

https://cds.cern.ch/record/2661761?ln=en
System test setup at CERN

CO₂ plant with ~1.4 kW at -30°C

Racks and PCs for DCS, interlock matrix, PSUs and readout

Light-tight and insulated **box**

Sensors for dew-point, humidity, temperature, light, door switches

Motorized stage for source scans

User interfaces for detector interlock, control/monitoring and diagnostics, independent operation

Large common effort!
Results of electrical pixel prototypes

- Tests with different **readout systems** give comparable results
- **Serial powering features**
 - Measurements with realistic power supplies and services scheme → Leakage current return through **HV power supply with low-ohmic off-mode required** to avoid forward bias on module with lowest ground level in chain → **Input to PSU specifications**

- **Power fluctuations**
 - Several observations (power fluctuations induced during reset of GBT, register start-up) underline the necessity of the improvement of the shuntLDO regulators → **Input to RD53 chip requirements, undershunt current protection and overvoltage protection**

- **Multiple SP-chains operated on a shared reference at PP0**

<table>
<thead>
<tr>
<th>Module</th>
<th>Voltage Drop [V]</th>
<th>Drop over R_HV [V]</th>
<th>ISensor [uA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM1</td>
<td>2.12</td>
<td>0.333</td>
<td>30.27272727</td>
</tr>
<tr>
<td>BM2</td>
<td>1.78</td>
<td>-0.023</td>
<td>-2.3</td>
</tr>
<tr>
<td>BM3</td>
<td>1.95</td>
<td>-0.219</td>
<td>-19.90909091</td>
</tr>
<tr>
<td>BM4</td>
<td>1.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM6</td>
<td>2</td>
<td>-0.041</td>
<td>-3.72727272</td>
</tr>
<tr>
<td>BM7</td>
<td>2.01</td>
<td>-0.053</td>
<td>-4.81818181</td>
</tr>
</tbody>
</table>

Powering scheme

<table>
<thead>
<tr>
<th>Scenario</th>
<th>SC1</th>
<th>SC2</th>
<th>SC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Fully functional
Simulated ITk Performance

- Track reconstruction efficiency in $t\bar{t}$ events with $\langle \mu \rangle = 200$ for the ITk Layout > 87%
- Fake rate < 10^{-4}

- High track parameter resolution

- Improved resolution and robustness compared to present inner detector
 - Strip detector has higher performance than TRT
 - Improved efficiency at $|\eta| > 2.5$ even in harsher conditions
 - Smaller pitch in ITk
 - Reduction of radius of pixel-layer 0
Summary

- New inner tracker in preparation for the ATLAS experiment for HL-LHC
- 5-layer pixel detector with about 10,000 pixel-hybrid modules (~6 x of current pixel detector)
 - New FE chip, sensors, powering scheme, services scheme and equipment getting designed and produced as prototypes
 - Collaboration working on the validation of the prototypes (electrical and thermal ones, assembly and testing procedures getting defined)
 - Challenges are the verification of data transmission concept and module stress
- 4-layer strip detector with about 18,000 strip modules
 - Design verified and many final design reviews passed
 - Pre-production fully running (QA/QC procedures defined, site qualification ongoing)
- Expected performance will enable rich physics program

Thank you!

Questions?
Thank you!

Questions?
Thank you for material to
Tony Affolder, Attilio Andreazza, Andrew Blue, Craig Buttar,
Sergio Diez Cornell, Diego Alvarez Feito, Tobias Flick, Claudia
Gemme, Matthias Hamer, Fabian Hügging, Heinz Pernegger,
Carlos Solans, Dennis Sperlich, Sven Wonsak
The LHC and the ATLAS experiment

Large Hadron Collider
- p-p, p-HI, HI-HI collider
- up to 14 TeV p-p collisions

Multi-purpose experiment ATLAS

- Many interesting results: Standard model verification, Higgs discovery, first precision measurements
- Exclusion of some popular models
- Probing of Higgs-Sector and TeV-scale BSM requires more data

→ High Luminosity LHC
Inner Detector of the ATLAS Experiment

- Current inner tracker of ATLAS performing very well
- Transition radiation detector and silicon detectors for tracking
 - Planar strip sensors
 - Hybrid pixel with planar and 3D sensors
- However, cannot cope with radiation damage and high occupancy at HL-LHC operation

<table>
<thead>
<tr>
<th>Detector</th>
<th>Area [m²]</th>
<th>Channels</th>
<th>Maximum dose [1MeV n_eq/cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>1.8</td>
<td>92 M</td>
<td>up to 3×10^{15}</td>
</tr>
<tr>
<td>Strip</td>
<td>60</td>
<td>6 M</td>
<td>up to 2×10^{14}</td>
</tr>
</tbody>
</table>
Radiation Damage in Silicon Sensors

Radiation damage: non-ionising energy loss of charged and neutral particles → damage in silicon bulk

Effects:
- Increase of leakage current
- Change of effective doping concentration
- Increase of depletion voltage
- Defects act as trapping centres affecting the charge collection efficiency

→ Radiation damage degrades the detector performance and limits the life time
Pixel Services

- Four types of data and power cables from USA15 to the detector
- Reuse most of the type-III cables, plus additional ones for DCS
- Type-II cables will be replaced due to activation
- Type-0 and type-I are completely new
- Not accounting for cooling
- Optimized the amount of optical links
Detector Readout with FELIX

- Full FELIX read-out
 - 24 lpGBT links per FELIX IO card
 - Based on network subscription protocol
 - No hardware access to FELIX IO card
- Challenge for calibration and DCS
 - Tuning of front-end prototypes adapted
 - Implications for DCS under discussion

Development for adoptions of firmware and hardware heavily ongoing to operate strip and pixel prototypes
Further observations with 7-module tests

- Optical driver chip (GBT) induced power fluctuations during reset: to be checked with new version of chip (lpGBT) and also RD53 front-ends → Input to requirement of front-end chip

- Differences in power in module voltage after startup and first configuration (up to 600 mV): feature how registers are set at startup (hopefully only in FE-I4)
Irradiation Campaign

- Not only FE, sensors and ASICs need to be qualified but also all glues and materials
- Radiation campaign for adhesives, resins, wirebond encapsulants and local support materials coordinated by Nicola Pacifico.
- More on https://maxrad.web.cern.ch/maxrad/

<table>
<thead>
<tr>
<th>Thermal Testing</th>
<th>Mechanical Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Sandwich coin samples with Al substrates</td>
<td>Bulk adhesive properties</td>
</tr>
<tr>
<td>• Tested following ASTM D5470</td>
<td>• Tensile dog-bone specimens</td>
</tr>
<tr>
<td></td>
<td>• Tested according to ISO 527 or ASTM D638</td>
</tr>
<tr>
<td>Nicola Pacifico</td>
<td>Adhesive bonding/fracture properties</td>
</tr>
<tr>
<td></td>
<td>• DCB specimens with CFRP substrates</td>
</tr>
<tr>
<td></td>
<td>• Tested according to ISO 25217</td>
</tr>
</tbody>
</table>

Electrical Testing

- Dedicated test geometry to measure impedance/attenuation developed at UniGe

Yannick Favre
Detector control system

- Detector control for operation and user interface to allow
 - Interlock
 - Control/Monitoring
 - Diagnostics