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LINAC Coherent Light Source - II

~3 km

10 000 times brighter
Continuous 1 MHz beam rate
1 million shots per second
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LCLS-II

Image courtesy of Jana Thayer, Mike Dunne
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Increased data production

CERN-ATLAS

Price et al. 2014

Full Body PET 
(EXPLORER)

Self-driving cars

ZOOX © Techcrunch
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Increased data production

• Economical and environmental impact - More data means:
• More fibers to the DAQ system and storage
• More power to transmit (FCC projected 2 MW for links alone*)
• More storage hardware (disks, tape, etc.)
• More power to data centers hosting hardware
• More people to manage data centers
• More data mining - more people needed to do that data mining
• More power needed to compute for data mining

• Drowning in data – focus on meaningful information

*Projections by Dr Bortoletto
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Real-Time Data Reduction at the Edge

• Assuming 1 TB/s, 12 hour shift, nonstop

• 43 200 TB per shift – 56 years of 4K movies

• 1.3 million$/month of storage costs created every shift

Detector DAQ
(ASIC/FPGA)

Online analysis
nodes

Disks
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Real-Time Data Reduction at the Edge

Detector
Online analysis

nodes
Disks

Detector EdgeML
Online analysis

nodes
Disks

Source

DAQ
(ASIC/FPGA)



Proof of concept - CookieBox
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CookieBox – Angular Streaking Detector

Hartmann, N. et al.,  Nature photonics, 2018
Siqi, Li et al. Optics express, 2018

Microchannel 
Plates (MCP)

Collection 
Tube
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CookieBox

The momentum of the electrons in the cloud 

give us information about : 

• Location of the origin

• Polarization of the x-ray shot

• Number of pulses

• Energy spectrum of the x-ray shot

• Relative time spectrum of the x-ray shot

• Using a circularly polarized laser
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Goals

Use the CookieBox to veto LCLS-II shots

in less than 100 µs

at the rate of 10 kHz for 2020 120 Hz for 2020

(eventually 1 MHz)
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The Reconstruction Problem

N. Hartmann et al., Nature Photonics, 2018
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Inference Neural Network

Generate 
various 
pulses

Simulate CookieBox
MCP 

signals

Neural NetworkCompare
Signal 

processing



Digitizer
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DAQ Chain Overview
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Neural Networks - Parallel and Pipelined

BAD

GOOD

Detector 
Fail

Neuron

Data buffer
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FPGA Implementation
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Proof of Concept

How many pulses in the shot?
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Neural Network Confusion Matrix
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 la
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Prediction
Parameter Value

Layers 3 full

Activation ReLu

Optimizer RMSProp

Training set 10 000

Testing set 2000

Epochs 50

Accuracy 80.9 %

Rejection 
accuracy

92.5 %
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Functionality Test

Trained Neural 
Network

Dataset
(10000)

GPU

GPU 
predicted 

labels

Trained Neural 
Network

FPGA
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100 % 
match



20

Latency – Theoretical

Layer 1 : 800 inputs
Layer 2 : 200 inputs

Output Layer : 100 inputs

Maximum theoretical 
throughput R :

𝑅 =
1

𝑀𝐴𝑋 (𝑙𝑎𝑦𝑒𝑟 𝑙𝑎𝑡𝑒𝑛𝑐𝑦)

R (62,5 MHz) = 78 kHz
R (250 MHz) = 312 kHz

17.6

4.4
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Latency – Measured

Layer 1 : 800 inputs
Layer 2 : 200 inputs

Output Layer : 100 inputs

Maximum theoretical 
throughput R :

𝑅 =
1

𝑀𝐴𝑋 (𝑙𝑎𝑦𝑒𝑟 𝑙𝑎𝑡𝑒𝑛𝑐𝑦)

R (62,5 MHz) = 77 kHz
R (250 MHz) = 308 kHz

19.3

4.8
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Ongoing work

• Ran new simulations

• Removed a source of bias

• Designing a recurrent neural network

By fdeloche - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=60109157
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Recurrent Neural Net
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Recurrent Neural Net
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Next Steps

• Increase the network complexity and performance
• Polarization
• Average energy/peak energy
• Time between two pulses in a single shot
• Add an uncertainty metric – Anomaly detection

• Deploy for LCLS-II CookieBox in 2020 – 10 kHz120 Hz

• Create tools for our users to deploy their own models on 
FPGA inference engines
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But my data!?!

• Prohibitively expensive to save all data

• Silly to save all data

• Lower beam rate

• Involves months to years of data mining

• Storage costs

• Algorithms will be logged in the metadata

• More science opportunities

• Anomaly detection – need a human, please!
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Summary

New photon sources and detectors will require new approaches towards data 
acquisition to achieve data reduction targets

Implemented a fast inference model on FPGA as proof of concept
• The current FPGA inference model achieves good performance:

• 100 % functional
• Latency – 19.3 µs
• Throughput – 77 kHz 

• New model being designed:
• New simulation data
• Recurrent model architecture

• Customized AI for every experiment
• Concept transferable to other high data rate applications
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Audrey.corbeil.therrien@usherbrooke.ca



Thank you!


