

LINAC Coherent Light Source - II

LCLS-II

Image courtesy of Jana Thayer, Mike Dunne

Increased data production

Increased data production

- Economical and environmental impact More data means:
 - More fibers to the DAQ system and storage
 - More power to transmit (FCC projected 2 MW for links alone*)
 - More storage hardware (disks, tape, etc.)
 - More power to data centers hosting hardware
 - More people to manage data centers
 - More data mining more people needed to do that data mining
 - More power needed to compute for data mining
- Drowning in data <u>focus on meaningful information</u>

*Projections by Dr Bortoletto

- Assuming 1 TB/s, 12 hour shift, nonstop
- 43 200 TB per shift 56 years of 4K movies
- 1.3 million\$/month of storage costs created every shift

CookieBox – Angular Streaking Detector SLAC Microchannel Plates (MCP) Collection Tube Hartmann, N. et al., Nature photonics, 2018 9 Siqi, Li et al. Optics express, 2018

CookieBox

The momentum of the electrons in the cloud give us information about :

- Location of the origin
- Polarization of the x-ray shot
- Number of pulses
- Energy spectrum of the x-ray shot
- Relative time spectrum of the x-ray shot
 - Using a circularly polarized laser

Use the CookieBox to veto LCLS-II shots

in less than 100 µs

at the rate of 10 kHz for 2020 120 Hz for 2020

(eventually 1 MHz)

The Reconstruction Problem

Inference Neural Network

Proof of Concept

How many pulses in the shot?

Neural Ne	etwork Con	fusion	Matri	ix				CI 4
					Pre	dictio	on	-31/
Parameter	Value				Λ			
Layers	3 full							
Activation	ReLu			100.0 %	0.0 %	0.0 %	0.0 %	0.0 %
Optimizer	RMSProp							
Training set	10 000			0.0 %	99.5 %	0.5 %	0.0 %	0.0 %
Testing set	2000	ab						
Epochs	50	e	\mathbf{V}	0.0 %	3.6 %	86.6 %	9.8 %	0.0 %
Accuracy	80.9 %	Tru						
		•	٨٠٨	0.0 %	0.0 %	20.3 %	73.2 %	6.5 %
				0.0 %	0.0 %	3.2 %	48.5 %	48.3 %
			m					

Functionality Test

Latency – Theoretical

20

Latency – Measured

21

Ongoing work

- Ran new simulations
 - Removed a source of bias
- Designing a recurrent neural network

By fdeloche - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=60109157

Recurrent Neural Net

Recurrent Neural Net

Next Steps

- Increase the network complexity and performance
 - Polarization
 - Average energy/peak energy
 - Time between two pulses in a single shot
 - Add an uncertainty metric Anomaly detection
- Deploy for LCLS-II CookieBox in 2020 10 kHz120 Hz
- Create tools for our users to deploy their own models on FPGA inference engines

But my data!?!

- Prohibitively expensive to save all data
- Silly to save all data
 - Lower beam rate
 - Involves months to years of data mining
 - Storage costs
- Algorithms will be logged in the metadata
- More science opportunities
 - Anomaly detection need a human, please!

Summary

New photon sources and detectors will require new approaches towards data acquisition to achieve data reduction targets

Implemented a fast inference model on FPGA as proof of concept

- The current FPGA inference model achieves good performance:
 - 100 % functional
 - Latency 19.3 µs
 - Throughput 77 kHz
- New model being designed:
 - New simulation data
 - Recurrent model architecture
- Customized AI for every experiment
- Concept transferable to other high data rate applications

Audrey.corbeil.therrien@usherbrooke.ca

