X-ray detector development at Cornell

DESY Joint Instrumentation Seminar Kate Shanks – ksg52@cornell.edu October 24, 2019

Outline

- Detector activity at Cornell
- Photon-integrating hybrid pixel array detectors for x-ray science
 - Scientific aims
 - Technology focus
- What's happening in the Gruner detector development group:
 - Wide dynamic range imaging:
 - MM-PAD
 - Burst-mode imaging:
 - Keck-PAD

Detector activity at Cornell

Photon science

- Development of photon-integrating area detectors
- Frame rate and dynamic range are major design focuses
- Close connection with the Cornell High Energy Synchrotron Source (CHESS):
 - National x-ray user facility, 6 GeV ring
 - Recent upgrade focused on delivering highenergy x-rays (20-100 keV)

<u>HEP</u>

- Tracker forward pixel detector (TFPX) for CMS HL-LHC upgrade
- Radiation hardness is a major design focus
- Starting to forge connections between the photon detector and HEP groups (Julia Thom-Levy, Divya Gadkari)

Detector activity at Cornell

High Energy Physics

- Energy scales : ~GeV
- Tracking, vertexing and resolution between tracks
- Detect Minimum Ionizing Particles (MIP's)
- Radiation : neutrons, protons, pions
- Thickness : 270 μm,
 Pixel Size : 100 μm x 150 μm

X-ray Physics

- Energy scale for photons : ~keV
- Measuring spectrum, flux, spatial distribution
- Absorbing particle in the bulk
- Radiation : x-rays
- Thickness : 500 μm
 Pixel Size : 150 μm x 150 μm

4

Accelerator-based x-ray sources

X-rays provide a means to probe matter at the atomic scale Accelerator-based sources provide highly brilliant, pulsed beams and enable a diverse range of experiments and techniques

	Storage ring	XFEL
Avg. brilliance (x-rays/s/mm ² /mrad ² /0.1% BW)	~10 ²⁰	~10 ²²
Peak brilliance (x-rays/s/mm ² /mrad ² /0.1% BW)	~10 ²⁴	~10 ³³
Pulse duration	10-100 ps	10-100 fs
Repetition rate	MHz–500 MHz	60 Hz-4.5 MHz

Structural biology

Materials science

High-res. image reconstruction

Cultural heritage

Holler et al, Nature, 2017

Outline

- Detector activity at Cornell
- Photon-integrating hybrid pixel array detectors for x-ray science
 - Scientific aims
 - Technology focus
- What's happening in the Gruner detector development group:
 - Burst-mode imaging:
 - 100x92 PAD
 - Keck-PAD
 - Wide dynamic range imaging:
 - MM-PAD

X-ray detectors for photon science: scientific aims

- Our goal: enable experiments at synchrotron light sources that are challenging or impossible with standard area detectors
- Focus at Cornell: advances in frame rate, dynamic range, high-flux performance
- Example applications: coherent diffractive imaging/ptychography, timeresolved studies of systems on the μs-ms timescale

Applications: Coherent diffractive imaging

Image reconstruction of an extended object with 10s of nm resolution

Example 100 ms frame

Phase reconstruction

Giewekemeyer et al., Journal of Synchrotron Radiation (2014) 21, 1167-1174

- PETRA III P10 w/Mancuso group (European XFEL)
- Key detector features:
 - Wide dynamic range + low noise: essential to obtaining accurate phase reconstruction
 - High flux capability: less attenuation needed -> fast scanning, high throughput

Applications: Microsecond dynamics

Deformation of metal compounds under high strain rates

Kolsky bar apparatus

Optical video, 1 million FPS

- CHESS G3 with Hufnagel group @ Johns
 Hopkins & Army Research Office
- Key detector features:
 - Fast frame rate
 - Good single-photon SNR

Demands on area detectors

- Fast readout (kHz and above)
- High SNR for single-photon detection
- Wide dynamic range
- Efficient detection over a broad energy range
- Ability to tolerate high instantaneous flux
 - Unavoidable at XFELs
 - ...but also an issue at today's storage rings:
 - Typical storage ring pulse width: ~10-100 ps
 - 2 photons/pulse: >2x10¹⁰ ph/s

Context: typical area detector characteristics

	Phosphor-coupled CCDs	Counting PADs	Integrating PADs
Max frame rate	few Hz	~100 Hz - 10s of kHz (with reduced bit depth)	100 Hz – 1 kHz; ~10 MHz with in-pixel frame storage
Pixel size	30 – 80 μm	55 – 172 μm	25 – 200 μm
Point spread	80 – 100 μm	<< 50 μm	<< 50 μm
Read noise	0.5 – 1 ph.	suppressed	0.1 – 0.7 ph.
Max. detectable signal/pixel/frame	23,500 – 60,000 ph.	11,000 – 10 ⁶ ph.	200 – 2x10 ⁷ ph.
Photon rate limit	Dictated by well depth and frame rate	10 ⁶ – 10 ⁷ ph/pix/s	> 10 ⁸ ph/pix/s
(Some) Ideal applications	Standard crystallography; time-resolved experiments with fast shutters	Shutterless crystallography and fine- phi slicing; time-resolved experiments	Experiments at XFELs and high-flux storage rings; time-resolved experiments
	Qu	antities listed in units of "photo	ons" refer to 12 keV photons

DESY Joint Instrumentation Seminar - Shanks - October 24 2019

Technology focus: Hybrid Pixel Array Detectors (PADs)

Signal processing layer

- Custom ASIC fabricated in commercial CMOS
- Possible features include: Photon counting In-pixel frame storage

...

Efficiency: Si is limiting at >20 keV

Material	ρ [g/cm³]	Z	E _{gap} [eV]	E [eV]	μ _e [cm²/Vs]	μ _h [cm²/Vs]	τ_{e}	τ_{h}
Silicon	2.33	14	1.12	3.6	1500	400	>1ms	>1ms
Ge	5.33	32	0.67	2.9	3900	1900	>1ms	>1ms
GaAs	5.32	31,33	1.42	4.3	4000	300	~10ns	~ 1ns
CdTe	5.85	48,52	1.44	4.4	1100	90	~ 3µs	~ 2µs

Biggest drawbacks:

- Si: low ρ,Z => low QE at high E
- Ge: low E_{gap} => needs cryo cooling
- GaAs: low τ => energy dependence
- CdTe: slow; material polarization => speed, complexity

Investigations into CdTe, Ge

CdTe vs. Si: Radiography at > 20 keV

750 μm In-Schottky CdTe (Acrorad), bump-bonding by Oy Ajat Ag tube @ 47 kV, average of 1000 images

<u>Ge</u>

Early-stage collaboration with MIT Lincoln Laboratory

Technology focus: Hybrid Pixel Array Detectors (PADs)

Counting vs. integrating

Photon-counting PADs

- Front end counts each x-ray individually
- Suppress pixel read noise and dark current
- Count-rate limited to ~10⁶ -10⁷ x-rays/pix/s (depending on source characteristics)
- Pixel well capacity (max. detectable signal per frame) set by counter depth

Photon-integrating PADs

- Front end measures the integrated energy deposited in the sensor during a frame
- Dark current must be subtracted; care required to *minimize* read noise
- Count-rate bottleneck avoided Only option for most XFEL experiments and intense single-bunch imaging.
- Well-depth limited by pixel storage capacity to ~1000's of photons/pixel/frame
 - ...but well-depth extension techniques can boost this to >10⁷ x-rays/pixel/frame

Outline

- Detector activity at Cornell
- Photon-integrating hybrid pixel array detectors for x-ray science
 - Scientific aims
 - Technology focus
- What's happening in the Gruner detector development group:
 - Wide dynamic range imaging:
 - MM-PAD
 - Burst-mode imaging:
 - Keck-PAD

Achieving wide dynamic range

...using linear methods

- Purely integrating pixel: well depth limited by feedback capacitance
 - Voltage swing typically ~1 V, feedback capacitance up to 2 fF/ μ m²
 - ~6x10⁴ 8-keV ph/pix max in 100 x 100 μm pixel
- Additional well-depth extension techniques needed
 - One option: charge removal

Mixed-Mode PAD (MM-PAD)

Mixed analog and digital readout provides extended dynamic range

Read time (frame rate)	0.86 ms (1.1 kHz)
Read noise (RMS)	0.16 photons @ 8 keV
Well capacity	4.7 x 10 ⁷ photons/pix/frame @ 8 keV
Sustained photon rate	>10 ⁸ ph/pix/s
Instantaneous photon rate	> 10 ¹² ph/pix/s (e.g. ~200 ph/pix/pulse)
	Tate et al., Journal of Physics: Conference Series 425 (2013)

062004 19

MM-PAD: applications

Wide dynamic range gives extraordinary experimental flexibility

Example #1: materials science

- Capture diffraction from Ni₃Al multilayer foil undergoing an exothermic reaction @ 2 ms per frame
- 5 photons per pixel full scale
- Single-photon sensitivity is key

(CHESS: Hufnagel group at Johns Hopkins)

Example #2: coherent diffractive imaging

- Capture scattering pattern from Au test object @ 100 ms per frame
- 10⁶ photons per pixel full scale
- Dynamic range and tolerance of high flux are key

(PETRA III: Mancuso group from European XFEL –

see Giewekemeyer *et al., Journal of Synchrotron Radiation* (2014) **21,** 1167-1174)

- **Beamline:** CHESS F2 _
- Energy: 42 keV -
- **Collaborators:** Beaudoin group @ U. Illinois, Peter Ko (CHESS)
- **Goal:** Probe grain-level deformation mechanisms and residual stress in polycrystalline Ti-7Al alloy under applied stress gradient

Chatterjee et al., J. Mechanics & Physics of Solids 109 (2017) 95

Present MM-PAD: Limitations

- Readout limited to ~0% duty cycle at max frame rate of 1.1 kHz
- Charge removal circuitry runs at 2 Mhz max
 - 4x10⁸ 8 keV x-rays/pix/s max sustained rate

An intermediate step: MM-PAD-2.0

improvements to MM-PAD pixel

Developed in TSMC 180nm process via 3 MPW submissions over 2014-2017

MM-PAD-2.0 characterization

High-current testing:

- External current source (no sensor)
- Good performance up to >10¹⁰ ph/pix/s

- Low-current testing:

- Measured noise: 5.5 keV
- Calculations indicate majority of noise is from charge injection from pixel reset switches
- Simulated amplifier read noise: ~1.3 keV

Cornell University

CU-APS-PAD "MM-PAD-2.1"

 Collaboration with detector group at APS

- APS: firmware, support electronics
- Cornell: ASIC

Cornell University

- Further update on MM-PAD-1.0 design

Specification	MM-PAD-1.0 (8 keV equivalent units)	MM-PAD-2.1 target (20 keV equivalent units)	
# of pixels per chip	128 x 128		
Pixel size	150 μm		
Sensor	Si	CdTe	
Electron-collection capability?	No – holes only	Yes – collect electrons or holes	
Frame rate	1.1 kHz	<u>></u> 1.1 kHz	
Duty cycle	0% at max frame rate	<u>></u> 90%	
Read noise	0.16 photon	≤ 0.1 photon	
Well capacity	4.7x10 ⁷ photons	10 ⁸ photons	
Instantaneous count rate	> 10 ¹² ph/s/pix	> 10 ¹² ph/s/pix	
Sustained count rate	> 10 ⁸ ph/s/pix	> 10 ⁹ ph/s/pix	

MM-PAD-2.1: July 2018 submission

Modified front-end

Modified charge removal circuitry *electron and hole collection compatibility*

Additional features:

- LVDS RX/TX for digital readout
- On-ASIC chip control register to simplify pinout
- Diagnostic bank for characterizing analog readout chain
- Programmable edge digital test pattern for characterizing digital readout chain

MM-PAD-2.1 test system

- 16 x 16 pixel array containing 4 pixel variants:
 - With/without front-end protection diode (1)
 - With/without charge-injection compensation on pixel reset switch (2)
- Stud-bonded to Si and CdTe sensors (Polymer Assembly Technology, Rockford, MI)
- Vacuum housing with x-ray transparent window for testing

DESY Joint Instrumentation Seminar - Shanks - October 24 2019

Functionality

Noise

- 50W silver tube source
- Al filter + graphite monochromator used to isolate 22.2 keV Kα line
- W pinhole mask used to isolate pixels
- Scan detector position in ¼-pixel steps to ensure ~every pixel is isolated by a pinhole in at least one set of images
 - 2000 dark and 50,000 x-ray frames acquired at each position
- Histogram analog values recorded by a given illuminated pixel; fit to a sum of Gaussians

MM-PAD-2.1: high-flux characterization

- APS 6-ID-C
- 10 keV x-ray energy, spot size ~2x1.5 pixels FWHM
- Linear response up to ~10¹⁰ ph/s

- Onset of radiation damage to ASIC oxide: ~118
 Gy(SiO2)
- At 20 keV and with a 750 μm CdTe sensor, this is equivalent to ~10⁶ s at the maximum specified flux of 10⁹ ph/pix/s

Outline

- Detector activity at Cornell
- Photon-integrating hybrid pixel array detectors for x-ray science
 - Scientific aims
 - Technology focus
- What's happening in the Gruner detector development group:
 - Wide dynamic range imaging:
 - MM-PAD
 - Burst-mode imaging:
 - Keck-PAD

Keck-PAD

Integration caps -

In-pixel frame storage provides down to ~100 ns spacing between stored frames (~10 MHz)

Read time	0.86 ms/frame
Storage caps/pixel	8
Read noise	1 photon @ 8 keV (C _F = 300 fF) 4 photons @ 8 keV (C _F = 1966 fF)
Well capacity	1112 photons @ 8 keV (C _F = 300 fF) 7288 photons @ 8 keV (C _F = 1966 fF)

Si Keck-PAD: single-bunch-train imaging at CHESS

CdTe Keck-PAD

- CHESS A1
- **Energy:** white beam, up to 160 keV
- Data: Gd3Ga5O12 Laue diffraction @ Integration time: 100 ns (200 ns image period)
 - **Sensor:** CdTe, In/Pt Schottky, h collection

Is CdTe fast enough for single bunch imaging?

Beamline: APS 35IDE (DCS) – 153 ns bunch separation

Energy: 7.1 keV fundamental, with harmonics up to >120 keV

Measure isolated diffraction spots from Cu

Measured response (solid) in excellent agreement with drift & diffusion simulations (dotted)

Becker et al., *JINST* **12** (2017) P06022

Completed Detailed Analysis of Schottky hole-collecting CdTe for "Static" and "Dynamic" Behavior

JINST 11 (2016) P12013

Characterization of CdTe sensors with Schottky contacts coupled to charge-integrating pixel array detectors for X-ray science

J. Becker,^{*a,b*} M.W. Tate,^{*a*} K.S. Shanks,^{*a*} H.T. Philipp,^{*a*} J.T. Weiss,^{*a,b*} P. Purohit,^{*a*} D. Chamberlain,^{*b*} J.P.C. Ruff^{*b*} and S.M. Gruner^{*a,b*,1}

 ^aLaboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, U.S.A.
 ^bCornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, U.S.A. JINST 12 (2017) P06022

Sub-Microsecond X-Ray Imaging Using Hole-Collecting Schottky type CdTe with Charge-Integrating Pixel Array Detectors

Julian Becker,^{*a,b*} Mark W. Tate,^{*a*} Katherine S. Shanks,^{*a*} Hugh T. Philipp,^{*a*} Joel T. Weiss,^{*a,b*} Prafull Purohit,^{*a*} Darol Chamberlain,^{*b*} and Sol M. Gruner^{*a,b,c*,1}

^aLaboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA ^bCornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA ^cKavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA

Conclusions

- CdTe can be used for many Keck- and MM-PAD experiments
- It is fast enough for 153 ns APS experiments if bias voltage is high enough
- Behavior is much more complex than Si users need to understand and factor in limits to get good scientific results

Summary

- Si-sensor MM-PAD and Keck-PAD are proven x-ray imagers
 - 2x3 module (256x384 pix) prototypes delivering excellent science
 - Several experiments are in the works
- Ongoing work
 - ASIC upgrades
 - MM-PAD: increased sustained flux capability, expose-while-readout capability, higher frame rates
 - Keck-PAD: 27 storage capacitors, lower noise, other improvements to ease readout
 - Investigating new sensors for high-energy imaging
 - Schottky hole-collecting CdTe works, but requires care
 - Ongoing work: Ge collaboration with Lincoln Labs
 - Commercialization:
 - FEI/Thermo Fisher is commercializing an MM-PAD variant for STEM
 - Sydor Instruments is commercializing the Keck- and MM-PAD for x-ray

Acknowledgements

- Cornell detector group:
 - Sol Gruner
 - Divya Gadkari
 - Martin Novak
 - Hugh Philipp
 - Jonathan Okasinski
 - Kate Shanks
 - Mark Tate
 - Julia Thom-Levy
- Support:
 - U.S. Department of Energy
 - Keck Foundation
 - U.S. National Institutes of Health
 - U.S. National Science Foundation
 - Kavli Foundation
 - DTRA

- Past Detector Group Members:
 - Sandor Barna
 - Julian Becker
 - Tom Caswell
 - Darol Chamberlain
 - Alper Ercan
 - Marianne Hromalik
 - Lucas Koerner
 - Prafull Purohit
 - Matt Renzi
 - Guiseppe Rossi
 - Dan Schuette
 - Joel Weiss

- Collaborators:
 - Sydor Instruments
 - FEI/Thermo Fisher
 - Argonne National Lab
 - Nino Miceli
 - Mike Hammer
 - John Weizeorick

