

## Two years of the phase-1 CMS pixel detector

# technology choices, operational experience, and future prospects

#### **Benedikt Vormwald**

Joint Instrumentation Seminar DESY Hamburg 14.06.2019



sponsored by



Bundesministerium für Bildung und Forschung

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

### **Large Hadron Collider**



## largest and most powerfull collider in the world

- locates at CERN near Geneva
- p-p collisions
- 13 TeV center-of-mass energy

#### running conditions in 2018:

- → 40MHz collision rate
- → ~50 pile-up events per bunch crossing
- → luminosity: <2e34 cm<sup>-2</sup> s<sup>-1</sup>

### **CMS and its Tracker**

#### **Compact Muon Solenoid**

- weight: 14000t
- diameter: 15m
- magnetic field: 3.8T
- in the center: largest silicon tracker ever build

## silicon strips in the outer region → 200m<sup>2</sup> sensor surface

- → 9.6 million channels
- diameter: 2.5m

#### silion **pixel** in the very heart

- → phase-0: until 2016
- → phase-1 upgrade: since 2017
- 1.24m<sup>2</sup> sensor surface
- → 124 million channels
- diameter: 32cm

CMS

## The CMS Phase-1 Pixel Detector

### Why did we need an upgrade?



#### design guidelines for phase-1

- improved ROC
- increased bandwidth
- additional tracking layer
- optimization of material budget

#### making the case

- with the old detector: >10h data taking with an inefficiency in layer 1 larger than 2%
- extrapolation to 2e34 cm<sup>-2</sup>s<sup>-1</sup>: 30% inefficiency
- clearly demonstrates that an upgrade is necessary



#### Benedikt Vormwald (UHH)

### **CMS Phase-1 Pixel Detector**



### **CMS Phase-1 Pixel Detector**



### **CMS Phase-1 Pixel Detector – Key Technologies**



The Phase-1 Pixel Detector contains many key technologies used in the LHC phase-2 upgrade

### **CMS Phase-1 Pixel Detector – Key Technologies**



The Phase-1 Pixel Detector contains many key technologies used in the LHC phase-2 upgrade

### **DC-DC Powering – Why?**

- 1.9 times more channels compared to phase-0
- same number of power cables due to very limited space
- without changes: larger currents over the same cable causing large power losses

$$P_{cable loss} = R I^2$$

• currents driven by power consumption of the detector module

$$P_{detector} = U \cdot I = const$$

- solution: transfer energy into detector with higher voltage/lower current and transform just before the load to operation voltage
- known concept for power supply of households, but we do it with direct currents (DC)



### **DC-DC Powering**

- DC-DC conversion standard technology in electronics
- buck/step-down converter in every computer
- but: not easy to build it radiation hard & magnetic field tolerant

#### design and specifications

- core: FEAST 2 ASIC designed by CERN
- conversion from 9-12V to 2.4V/3.0V
- magnetic field tolerant: up to 4T
- radiation hard: 150 Mrad (Si), 5e14 n<sub>eq</sub>/cm<sup>2</sup>
- conversion efficiency ~82%



FEAST2





#### Two Year of the Phase-1 CMS Pixel Detector

### **CMS Phase-1 Pixel Detector – Key Technologies**



The Phase-1 Pixel Detector contains many key technologies used in the LHC phase-2 upgrade

### **Phase Transition and Latent Heat**

## What happens at a transition between the liquid and gaseous phase? example: evaporation of water



- in the 2-phase state the material can absorb a lot of energy without changing temperature
  - ideal property of a coolant
- region of 2-phase state of CO2 usable for cooling (-50°C  $\rightarrow$  30 °C)

### CO<sub>2</sub> Cooling – Thermodynamic Cycle



- $D \rightarrow G$ : low impedance system = almost constant pressure from the inlet to the detector up to the accumulator in the cooling plant in theory
- pressure in accumulator (G) steers temperature inside the detector

### **CO<sub>2</sub> Cooling – Specifications**



#### CO2 cooling plants

- 2 identical cooling plants (BPix, FPix)
- redundant system
- cooling power per plant: 15kW
- location: in CMS service cavern (accessible)
- operational range: 16°C (60bar) → -22°C (20bar)
- lower temperature possible, but not commissioned



#### inside the detector

- carbon fiber structure for efficient heat exchange
- → stainless steel cooling loops
  - → diameter 1.7mm
  - → wall thickness 50µm
- very lightweight detector design possible!

### **Material Budget**



- electronic
   boards/connectors
   moved to higher η
- 2-phase CO<sub>2</sub> cooling
- lightweight mechanical support structures

### **CMS Phase-1 Pixel Detector – Key Technologies**



The Phase-1 Pixel Detector contains many key technologies used in the LHC phase-2 upgrade

### **Signal Path – Digital Modules**



### **Signal Path – Service Cylinder**



### Signal Path – µTCA Backend Electronics



- replacement of VME front-end boards
  - 108 FrontEndDrivers (FED) → detector readout
  - 16+3 FrontEndController (FEC) → detector control
- new CMS-wide crate standard: µTCA
  - all based on generic AMC card (FC7) built around Kintech 7 FPGA and 4GB DDR3 RAM
  - different flavors realized with FPGA mezzanine cards/ firmware
- capable to drive/receive links of up to 10Gb/s



## **Operational Experience**



### Disclaimer

- I will be very open on problems we encountered during the last two years
- BUT: don't get the wrong impression that the detector did not work
- the physics performance was always excellent not at last thanks to an hard-working, fantastic operation team!



#### vertices from nuclear interaction





#### di-muon mass on HLT trigger level

#### Two Year of the Phase-1 CMS Pixel Detector

### **Timing between Layers**

#### timing between layers

- read-out chip in layer 1 (PROC600) half a clock cycle (12.5ns) faster than the ROCs in layer 2-4 and FPix (psi46dig)
- shared clock/trigger distribution in layer 1/ layer 2 per φ-sector
- read-out of layer 2 too early, layer 1 too late
- very small overlap of efficiency plateau

#### plans for the future

- current solution seems to work, though is not comfortable to operate so close to the efficiency edge
- TBM for layer 1 replacement includes adjustable delay (on the module level)



### **Single Event Upsets**

#### status in 2017/2018

- single event upset expected in high radiation environment
- SEUs observed in many components in 2017/2018
- normal procedure: download configuration parameters to the front-end regularly



### The DCDC Story

#### timeline

- October 5<sup>th</sup> 2017: first DCDC converter stopped working
- extrapolation of failure rate to 2018: no sufficient tracking by mid 2018
- extraction of the detector during YETS 2017/2018
- replacement of **all** converters with similar version, but bigger fuse (allowing to operate the converters at a lower input voltage)
- early 2018: reinstalled the detector without managing to break a single converter outside CMS(!)



#### characterization of extracted converters

- I-V characterization of all extracted converters:
  - 65 not switching anymore
  - 333 higher currents in disabled state
  - rest (~800) behaves normally



#### damage on modules

- sensor leakage currents cannot be drained efficiently if ROC is not powered
- damage on the pre-amplifier if HV on/ LV off
- · damage proportional to time and sensor leakage current
- 6 (accessible) out of 8 damaged modules in L1 replaced



### The DCDC Story

#### after months of investigation

- chip designers of the FEAST chip found a way to reproduce the breaking symptoms
- once a feedback loop was established, breaking mechanism could be identified quickly



figure by Federico Faccio

broke in 2018!

### Layer-1 readout chip crosstalk

#### crosstalk issue

- large crosstalk has been observed
  - extra hits appear correlated with real hits
  - → effect is highly rate dependent
- higher thresholds needed in order to operate the chip efficiently
- two main sources of the problem identified recently
  - dominant contribution can be mitigated by optimized programming sequence
  - better shielding in the ROC design will further improve the situation

#### plans for the future

- crosstalk problem will be addressed in the next version of the read-out chip
- problem will be gone after LS2



### **Leakage Currents**

observation: strongly varying leakage currents within the same layer



thermal mock-up fully instrumented with temperature probes ideal tool to characterize the cooling performance! hypothesis: inhomogeneous cooling?

#### challenges:

- measured leakage currents always sum of 4 or 8 modules in layer 2
- only 2-3 temperature probes along a cooling pipe (covering  $\Delta \phi$ =90°)
- position of the probes not known precisely



### **Thermal Characterization**

#### 1:1 rebuild of layer 2 half-shell with heater modules



- adjustable heat load for groups of modules
- temperature sensor on top of each module
- adjustable preheating on a section of the CO2 pipe in front of the mock-up
- PLC and arduino based readout



R027

R006

2

R0 28 🔦

R0 23 🚺

1

3

2

### **Thermal Characterization**



### **Thermal Characterization**



- cooler at the outlet
- expected behavior of CO2 cooling

prediction of relative factor of leakage currents based on detailed measurement in thermal mock-up



20

-20

-40

-60

-80

### **Experience with CO2 Cooling**

- large temperature gradient observed
- not expected, but reproduced with thermal mock-up
- very stable and reliable operation during 2017 and 2018
- adjusted (reduced) the flow over the last two years three times to optimize the cooling performance
- thermal mock-up of a part of a layer as an inevitable tool in understanding the (counter-intuitive) characteristics of the cooling



#### important lessons learned:

- 2-phase CO2 is a very efficient coolant, but it is not easy to warm up the detector if there is no heat dissipation from active components
- annealing? safety?
- heating wires should be considered for each CO2 cooled system

## Detector Performance and Radiation Effects



### **Detector Status by the end of 2018**



### **Detector Status by the end of 2018**



### **Hit Efficiency**



### Collected Dose in 2017&2018



| ~120fb <sup>-1</sup><br>(end of Run-2) | fluence<br>[10 <sup>14</sup> n <sub>eq</sub> /cm <sup>2</sup> ] | dose<br>[Mrad Si] |
|----------------------------------------|-----------------------------------------------------------------|-------------------|
| layer 1 (r=29mm)                       | 8.4                                                             | 40.1              |
| layer 2 (r=66mm)                       | 1.5                                                             | 8.5               |
| layer 3 (r=109mm)                      | 0.9                                                             | 5.2               |
| layer 4 (r=160mm)                      | 0.6                                                             | 2.8               |

- limit for ASICS: 150Mrad
- "limit" for sensor:  $15 \cdot 10^{14} n_{eq}/cm^2$
- Run-3: at least 220 fb<sup>-1</sup> more =  $15 \cdot 10^{14} n_{eq}/cm^2$ (layer 1)  $\rightarrow$  **23.4**·**10**<sup>14</sup>  $n_{eq}/cm^2$  at the end of Run-3 without exchange

### **Monitoring and Prediction of Radiation Effects**



- every 1-2 weeks: bias scan on representative subset of modules in order to monitor radiation effects on sensor
- simulation based on Hamburg-model (effective space charge) to predict evolution
- very valuable tool for detector operation

## Detector Extraction and Scheduled Work



#### FPix -z extraction (11.01.2019)



#### BPix extraction (15.01.2019)







### Plans during LHC Long Shutdown 2 (LS2)



#### CMS Pixel detector will be in a significantly improved state at the beginning of LHC Run-3

#### Work has started...



disconnected L1 module cables

#### unmounted layer 1 (first half)



Benedikt Vormwald (UHH)

### Conclusions

- successful commissioning and operation of the CMS phase-1 pixel detector since 2017
- unforeseen extraction at the end of 2017 due to massive DCDC failure
- very smooth running in 2018
- gathered very valuable experience with key technologies of modern silicon detectors
- significant improvements planned for LS2 to get the detector in the best possible shape for its remaining lifetime





## Backup

### **Timeline of the last two years**



Benedikt Vormwald (UHH)

## **CMS Pixel Detector – Physics Impact**



## **LHC Parameters during Run-2**

| Parameter                                                            | Design | 2018           | 2017         | 2016       | 2015         |
|----------------------------------------------------------------------|--------|----------------|--------------|------------|--------------|
| Energy [TeV]                                                         | 7.0    | 6.5            | 6.5          | 6.5        | 6.5          |
| No. of bunches                                                       | 2808   | 2556           | 2556 - 1868  | 2220       | 2244         |
| No. of bunches per train                                             | 288    | 144            | 144 - 128    | 96         | 144          |
| Max. stored energy per beam (MJ)                                     | 362    | 312            | 315          | 280        | 280          |
| <mark>β</mark> * [cm]                                                | 55     | 30 -> 27 -> 25 | 40 ->30      | 40         | 80           |
| <b>Bunch Population N</b> <sub>b</sub> [10 <sup>11</sup> p]          | 1.15   | 1.1            | 1.25         | 1.25       | 1.2          |
| Typical normalized emittance [µm]                                    | 3.75   | ~1.8 / 2.2 SB  | 1.8 / 2.2 SB | 1.8 / 2 SB | 2.6 / 3.5 SB |
| Peak luminosity [10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | 1.0    | 2.1            | 2            | 1.5        | < 0.6        |
| Half Crossing Angle [µrad]                                           | 142.5  | 150 -> 130     | 150 -> 120   | 185 ->140  | 185          |

https://indico.cern.ch/event/751857/contributions/3259373/attachments/1783143/2910577/belen-Evian2019.pdf

## **Pile-up Distribution during Run-2**

CMS Average Pileup (pp,  $\sqrt{s}$ =13 TeV)



**Benedikt Vormwald** 

## **Projected LHC Parameters in Run-3**

#### Parameters at the end of a fill

| ROUND OPTICS                                   | 2021                         | 2022        | 2023     | Comment                                                                         |  |
|------------------------------------------------|------------------------------|-------------|----------|---------------------------------------------------------------------------------|--|
| Beam energy [TeV]                              | 7.0                          |             |          | 7 TeV is being re-discussed for Run III                                         |  |
| Collisions at IP1/5 & IP2/IP8                  | 2736/2736 & 2250/2376        |             | 76       | Possible heat-load limitation not included                                      |  |
| Bunch length [ns]                              |                              | 1.0         |          | 1.0 ns after ~10 h of SB, then kept constant                                    |  |
| Normalized emittance [µm]                      | 2.5                          |             |          |                                                                                 |  |
| β <sup>*</sup> [m] at IP1/5                    | 0.28                         |             |          | Telescopic optics                                                               |  |
| Half X-angle [mrad] at IP1/5                   | 162 (9.4 σ <sub>beam</sub> ) |             |          | V/H                                                                             |  |
| Levelling time $@~2 	imes 10^{34} Hz/cm^2$ [h] | 0.0 → 5.0                    | 5.0 → 11.9  | 11.9     | Burn off calculated with 110 mb (IR8 included)                                  |  |
| Optimal fill length [h]                        | → 9.8                        | 9.8 → 14.6  | 14.6     | Assuming a turn around time of 4 h                                              |  |
| Bunch charge [10 <sup>11</sup> ppb]            | 0 → 0.89                     | 0.89 → 0.97 | 0.97     |                                                                                 |  |
| β <sup>*</sup> [m] at IP2/IP8                  | 10.0/1.5                     | 10.0/1.5    | 10.0/1.5 | $\beta^{\circ}$ @ IP2/8 is kept constant over the full Run                      |  |
| Half X-angle [mrad] at IP2/8                   | 200/250                      | 200/250     | 200/250  | V/H at IP2/8 (V-Xing in IR8 under discussion)                                   |  |
| Half    sep. @ IP2 [ $\sigma_{coll}$ ]         | $0 \rightarrow 1.60^{(1)}$   | 1.60 → 1.64 | 1.64     | For $1.3 \times 10^{31} \text{Hz/cm}^2$ & 200-70=130 µrad Xing                  |  |
| Half    sep. @ IP8 $[\sigma_{coll}]$           | 0 → 0.13 <sup>(2)</sup>      | 0.13 → 0.38 | 0.38     | For $2.0 \times 10^{33}$ Hz/cm <sup>2</sup> & 250+135=385 rad Xing (worst case) |  |

<sup>(1)</sup> Lumi levelling at  $1.3 \times 10^{31}$ Hz/cm<sup>2</sup> in Alice over the full fill length is granted when the intensity ramp up reaches ~2 × 10<sup>10</sup> ppb with 2250 collisions/turn

<sup>(2)</sup> Lumi levelling at 2.  $0 \times 10^{33}$ Hz/cm<sup>2</sup> in LHCb over the full fill length will be granted towards the end of 2021 @  $1.4 \times 10^{11}$  ppb for negative LHCb polarity assuming 2376 collisions/turn [and earlier for positive polarity, with 115 µrad internal crossing, when the intensity ramp up reaches  $1.15 \times 10^{11}$  ppb ].

https://indico.cern.ch/event/751857/contributions/3259414/attachments/1782259/2914150/nkarast\_evianRunIII.pdf

## **Projected LHC Parameters in Run-3**

|                                            | 2021               | 2022                     | 2023             |             |  |
|--------------------------------------------|--------------------|--------------------------|------------------|-------------|--|
| Intensity ramp up [1011 ppb]               | 0 → 1.4            | 1.4 → 1.8                | 1.8              |             |  |
| Round optics (Flat optics)                 |                    |                          |                  |             |  |
| Optimal fill length [h]                    | → 9.8 (10.8)       | 9.8 (10.8) → 14.6 (16.4) | 14.6 (16.4)      |             |  |
| β* [m] at IP1/5                            | 0.28 (0.50/0.15)   |                          |                  |             |  |
| Integrated lumi in IR1/5 [fb-1]            | 18 (19)            | 97 (102)                 | 106 (110)        | →411 (421   |  |
| β` [m] at IP2                              |                    | 10.0                     |                  |             |  |
| Integrated lumi in IR2 [pb-1]              | 36(1)              | 90                       | 90               |             |  |
| β <sup>*</sup> [m] at IP8                  |                    | 1.5                      |                  |             |  |
| Integrated lumi in IR8 [fb <sup>-1</sup> ] | ~ 3 <sup>(2)</sup> | 14                       | 14 <sub>Ex</sub> | ceeds targe |  |

<sup>(1)</sup> Lumi levelling at  $1.3 \times 10^{31}$ Hz/cm<sup>2</sup> in Alice over the full fill length is granted when the bunch population reaches ~2 ×  $10^{10}$  p/b with 2250 collisions/turn

<sup>(2)</sup> Lumi levelling at  $2.0 \times 10^{33}$  Hz/cm<sup>2</sup> in LHCb over the full fill length is granted when the intensity ramp up reaches  $1.4 \times 10^{11}$  ppb (resp.  $1.15 \times 10^{11}$  ppb) with 2376 collisions/turn for negative (resp. positive) LHCb polarity. A performance reduction factor of 50% has been applied accordingly in 2021.

https://indico.cern.ch/event/751857/contributions/3259414/attachments/1782259/2914150/nkarast\_evianRunIII.pdf

### **Detector Status by the end of 2018**



Benedikt Vormwald (UHH)

#### **Detector Status by the end of 2018**



### **Monitoring and Prediction of Radiation Effects**

#### L1: Leakage current per module

Simulation for z = 0 cm, scaled to silicon temperature and multiplied with factor to fit data:  $\times 1.3$ 



#### leakage currents modeling

- impressively well matching prediction (except a constant factor!)
- assumption: silicon temperature ~-8.5°C
- reasonable comparing with data from thermal mock-up
- thermal mock-up again one of the main ingredients to understand temperatures inside of the detector
- ongoing work: further improvements of the temperature model

#### **Residuals/ Resolution**

