

CVD diamond sensor research at ETHZ

Dmitry Hits

Outline

- Why diamond is a good detector
- Examples of application of diamond detectors
- Diamond detector research at ETH

Why use diamond as detector

- Intrinsic Properties
 - High thermal conductivity (good heat spreader)
 - Wide band gap (no thermally generated noise)
 - Large single atom displacement energy (radiation hardness)
 - Large mobility and large saturation velocity (fast signals)
- Device Advantages
 - Intrinsically simple device
 - ➡ can fabricate robust, compact devices
 - High temperature operation (no need for cooling)

Why aren't we all use diamonds

- Electronic grade diamond is still a "research" type device
 - Production is expensive
 - Good quality samples are scarce and selecting them is not an easy process
 - Electronic properties are not fully understood
 - for example, it is very difficult to precisely simulate impurities in diamond

Few examples of where diamond detectors are used

Pad Diamonds at CMS

BCML(1/2)

- Leakage current measurement.
- Beam loss monitoring for

BCM2

- active protection
- Short intense events monitoring
- Readout identical to LHC BLM system.
- 16 10x10mm² pCVD diamonds

BCM(1)F

 Single particle counter.

BCM1

- Histograms particle hits in time domain
- Luminosity and beam gas measurement.
- 14 5x5mm² diamonds (4 sCVD 10 pCVD)

BRIL

Pixelated Diamonds at ATLAS

- Diamond E (CERN) Ionitor (DBM)
 - 8 Telescop
- side) 24 modules total
- 18 equipped with pCVD 20 x 20 mm² diamond sensors
- Bunch by bunch luminosity monitoring with <1% precision per bunch per lumi block
- bunch by bunch beam spot monitor

pCVD diamond bump-bonded to FE-I4 chip

600 Z0 [mm]

-400

-200

Diamonds for timing in TOTEM

Diamonds for X-rays at ESRF

ID22 nanofocus beamline, 5-6 Sept 2012:

17keV, flux 2.5x 10⁹ ph/sec

~50 nm beam spot on diamond detector

diamond piezo stage step-displaced vertically: 10nm steps clearly visible

from J. Morse presentation at ADAMAS workshop (2012)

ETH zürich Diamond detector research at ETH

- Radiation hardness study
- Study of detector response at various rates
- Study a new (more radiation tolerant) device concepts
 - 3D diamond detectors
- Study of transport properties of diamond sensors
 - edge-TCT with femtosecond laser
- Developing in house methods for constructing diamond detectors

Study of the radiation hardness of CVD diamonds

Diego Alejandro Sanz Becerra (present)

Felix Bachmair, Lukas Bäni (past)

Dmitry Hits, Instrumentationseminar DESY/UHH,13 October 2017

ETH *zürich* Testing of radiation hardness of CVD diamonds

- Samples are irradiated prior to the measurement
 - 25MeV, 70MeV, 800MeV and 24 GeV protons
 - reactor neutrons
- On each sample a strip detector is build with a low noise VA2 readout
 - Noise is only 80 electrons after common mode subtraction
- Samples are pumped to fill the active traps before the test
- Relativistic charged particle beam
 - CERN SPS beam line 120 GeV protons or pions
- Beam telescope reconstructs particle tracks and predicts their impact position in the device under test with $\sim 2 \mu m$ precision

Diamond strip detector wire bonded to VA2 readout

Radiation hardness

- Transparent analysis
 - After telescope alignment and pedestal subtraction
 - Look in the 10 strips closest to the hit position
 - Select 2 neighboring strips with the largest charge
- The CCD is deduced from the Landau mean

ETH zürich Radiation hardness (800 MeV protons)

ccd / t 6.0 CC Convert CCD to mean free path 0.8 0.8 ccd / t - $\frac{\operatorname{ccd}}{\operatorname{t}} = \sum_{i} \frac{\operatorname{mfp}_{i}}{\operatorname{t}} \left(1 - \frac{\operatorname{mfp}_{i}}{\operatorname{t}} \left(1 - \operatorname{e}^{-\frac{\operatorname{t}}{\operatorname{mfp}_{i}}} \right) \right)$ 0.7 0.6 0.6 0.8 0.5 $\frac{\text{ccd}}{\text{t}} = \sum \frac{\text{mfp}_i}{\text{t}} \left(\frac{\text{mfp}_i}{\text{t}} \right)$ $\frac{\mathsf{mfp}_{i}}{\mathsf{+}} \left(1 - \mathsf{e}^{-\frac{\mathsf{t}}{\mathsf{mfp}_{i}}} \right)$ Fit mfp vs fluence for each sample ind 0.4 0.6 0.4 0.30.4 0.2 $- \frac{1}{mfp} = \frac{1}{mfp_0} + k\phi$ 0.2 0.2 0.1 Damaged factor is average between all 123 2 З 5 6 n λ/t The initial "damage" offset for pCVD

diamonds is adjusted individually to provide the best fit to the model $\times 10^{-2}$

Dmitry Hits, Instrumentationseminar DESY/UHH,13 October 2017

TH Institute for

Particle Physics

Summary of radiation hardness tests

 Damage constants do not seem to follow theoretical models

Dmitry Hits, Instrumentationseminar DESY/UHH,13 October 2017

High rate tests at PSI

Micha Reichmann

With a strong support from the rest of the crew

PSI

High Intensity Proton Accelerator (HIPA) beam line complex

ETH Institute for Particle Physics

Beam conditions

- PSI HIPA accelerates ~10¹⁶ protons/sec to 590 MeV on two fixed targets ((É)paisse and (M)ince)
- π M1 beam line with beam optics tuned to π + at 260 MeV/c
- Rate controlled with two sets of collimators from 2 kHz/cm² to 10 MHz/cm²

Test setup (pads)

- Modular reconfigurable telescope
 - 100 μm x 150 μm pixels
 - 4 tracking planes
 - up to 6 possible
 - inner tracking planes provide masked trigger
 - coincidence with scintillator for precise ~ 1 ns event timing
 - ~70 μm position resolution at PSI
 - limited by multiple scattering
- 2 detectors under test
 - 5 mm x 5 mm CVD diamonds, thickness 500 μm
 - pulse height amplified by fast CERN/OSU amplifier (a.k.a. CVDFE1), 3-6 ns rise time, pulse goes in under 20 ns

Analysis procedure (waveform)

- Pulse height amplified with CVDFE1 fast amp
 - 3-6 ns rise time, goes away in under 20 ns
- Digitized by DRS4 evaluation board
 - 1024 sampling points
 - Sampling speed 2 GSPS

- Find peak in the signal region
- Integrate in the window around the peak
 - Integration window optimized to provide best signal to noise ratio
- Subtract pedestal integral
 - Pedestal integrated exactly one bucket in front of the signal

Pad detector specific cuts

- Careful handling of systematic effects
 - Remove saturated wave forms (heavy ionizing particles)
 - Remove calibration pulser events
 - Remove residual trigger jitter
 - Remove events in wrong bucket
 - Accept only events with one hit in each plane
 - Accept only tracks predicting into the fiducial area
- Remaining pulse height distribution **shown in blue** is clean with no remaining pedestal events

Particle Physics

Results (pCVD - pad detector)

- Average pulse height vs pion rate
- Pulse height was measured at several rate points between 2 kHz/cm² and 10 MHz/cm²
 - scanned up and down up to 4 times to check repeatability
- Pulse height very stable after irradiation
 - slight change in pulse height, ~5-8% before irradiation,
 - could be due to the inadequate surface preparation (we are checking that)

3D CVD diamond Detectors

3D detector concept

[Parker et al., NIM A395 (1997)]

- Incorporate bias and readout electrodes into detector's bulk
- Same detector thickness Δ
 - same amount of charge induced by an ionizing particle
- Shorter drift distance in 3D detectors $L < \Delta$
 - reduced probability of charge trapping in radiation damaged and/or polycrystalline detectors

3D detector fabrication

- Femtosecond laser converts insulating diamond into a resistive mixture of various carbon phases: DLC, amorphous carbon, graphite, etc
- Early detectors had 90% column yield [Bachmair et al., NIM A, 786 (2015)]
 - recently ~100% has been achieved using Spatial Light Modulation to correct for aberration in diamond

3D detector fabrication

- Femtosecond laser converts insulating diamond into a resistive mixture of various carbon phases: DLC, amorphous carbon, graphite, etc
- Early detectors had 90% column yield [Bachmair et al., NIM A, 786 (2015)]
 - recently ~100% has been achieved using Spatial Light Modulation (SLM) to correct for aberration in diamond

Dmitry Hits, Instrumentationseminar DESY/UHH,13 October 2017

Testing 3D detectors at CERN

Diego Alejandro Sanz Becerra (present)

Felix Bachmair, Lukas Bäni (past)

Dmitry Hits, Instrumentationseminar DESY/UHH,13 October 2017

Testing of radiation hardness of CVD diamonds

- On each sample a strip detector is build with a low noise VA2 readout
 - Noise is only 80 electrons after common mode subtraction
- Samples are pumped to fill the active traps before the test
- Relativistic charged particle beam
 - CERN SPS beam line 120 GeV protons or pions
- Beam telescope reconstructs particle tracks and predicts their impact position in the device under test with $\sim 2 \ \mu m$ precision

ETH*zürich* 3D detector in single crystal CVD diamond

• 3 detectors

ETH Institute for Particle Physics

- strip with backside contact for bias
- 3D with bias and readout contacts on the same side (150µm cell size)
- 3D phantom (same metal pattern as 3D but without graphitic columns)
- Some broken columns in the detector (90% success rate in column drilling)

ETH*zürich* 3D detector in single crystal CVD diamond

Dmitry Hits, Instrumentationseminar DESY/UHH,13 October 2017

ETH*zürich* Charge collection efficiency with a cell

- Overlay average charge collected in all "good" cells
- 3D scCVD
 - Charge collected uniformly throughout cell, except for location of columns
- 3D pCVD
 - Charge collection is not uniform over the cell
 - low field regions collect less charge

good 3D cell in single crystal diamond

good 3D cell in polycrystalline diamond

ETH *zürich* Comparison between data and simulations

- Simulated ionizing particle passing through the quarter cell
 - Divided the area into $7.5x7.5 \mu m$ bins, and simulated an ionizing particle hit at the center of each bin
- Limit charge lifetime to simulate effects of charge trapping
- Plot the charge collected as function of hit position

ETH Institute for Particle Physics

• Good qualitative agreement between simulation and data

ETH*zürich* Full 3D detector in polycrystalline CVD diamond

- 3 dramatic improvements compared to previous generation 3D
 - an order of magnitude more cells: from 99 to 1188
 - smaller cell size: $100 \ \mu m \times 100 \ \mu m$
 - higher column efficiency: from 92 % to 99 %
- analysis in progress
 - some cells are not connected due to problems with metallization (too thin strips)
 - contiguous region shows >80% of charge collection

average pulse height in one strip vs hit position

Dmitry Hits, Instrumentationseminar DESY/UHH,13 October 2017

Testing 3D detectors at PSI Micha Reichmann

Dmitry Hits, Instrumentationseminar DESY/UHH,13 October 2017

ETH *zürich* 1. 3D poly diamond with pixel readout

- First assembly with pixel readout chip and 3D pCVD diamond produced
 - Bump bonded by B. Harrop, Physics Department, Princeton University to the latest CMS digital pixel chip with low threshold (~1500 electrons)
- 3D columns were designed to stop 15µm before the end of the material and drilled from both sides
 - produced by: Dr. P. Salter, Prof. M. Booth, Department of Engineering Science, University of Oxford

ETH *zürich* 2. 3D poly diamond with pixel readout

- Second assembly with pixel readout chip and 3D pCVD diamond produced
 - Bump bonded by B. Harrop, Physics Department, Princeton University to the latest CMS digital pixel chip with low threshold (~1500 electrons)
- 3D columns were designed to stop 15µm before the end of the material and drilled from both sides
 - produced by: Dr. P. Salter, Prof. M. Booth, Department of Engineering Science, University of Oxford
ETH*zürich* Tilted view of the 3D poly diamond pixel chip assembly

Beam test of 3D pixel detector

- Latest (August 2017) testbeam at PSI
 - 260 MeV/c positive pions
- Read-out chip setup
 - Threshold for accepting hits: ~1500 electrons
- Test performed:

ETH Institute for Particle Physics

- rate scan from 7 kHz/cm2 7 MHz/cm2
- Bias scan from 0V to -55V
- Angle scan 0 30 degree
- rise time scan (varying CMS-Pixel DAC to increase rise time of the ROC)

Rotation stage setup for $50x50\mu m^2$ cell 3D

ETH Institute for Particle Physics

Beam test of 3D pixel detector

- All results are very preliminary!
 - The peak at 0 we are not yet able to explain
- Pulse height calibration for diamond samples is approximate
- Silicon sample was calibrated with X-ray fluorescent lines
- Mean of the fit for 50x50µm² is 16ke
 - ~90% charge collection

Hit efficiency

- Efficiency checked by counting all hits in the device under test and dividing them by the number of tracks predicted by the telescope within a fiducial area
- Efficiency very high for all 3 devices
 - $150 \times 100 \mu m^2 98.5\%$, $50 \times 50 \mu m^2 99.4\%$, planar Si 99.9%
- We expect that efficiency will be even higher for the tilted 3D device

ETH Institute for Particle Physics

edge-Transient Current Technique Christian Dorfer

edge-TCT (pads)

- Powerful tool to demystify the charge transport properties of (irradiated and unirradiated) sCVD diamond:
 - space charge thus the electric field
 - trapping times
 - charge collection efficiency (CCE)
 - saturated velocity
 - mobility electrons and holes

Electronic band gap of diamond

Electronic band diagram of diamond showing photon absorption by the indirect band gap.

Indirect Bandgap

required energy $\approx 5.47 \text{ eV} / 226 \text{ nm}$ (minus phonon contribution and exciton energy) 1-photon absorption 2-photon absorption: $E_v \approx 2.74 \text{ eV} / 453 \text{ nm}$

Direct Bandgap

required energy = 7.3 eV / 170 nm 1-photon absorption 2-photon absorption: $E_{\gamma} = 3.65 \text{ eV} / 340 \text{ nm}$ 3-photon absorption: $E_{\gamma} = 2.43 \text{ eV} / 510 \text{ nm}$

Attoline Laser

- ~ 25 fs
- 0.1 5 nJ pulse energy, equivalent to 2*10⁸
 10¹⁰ photons/pulse
- photon energy of 3.1 eV (400 nm)

Particle Physics

DAQ screenshot

scCVD sample

- un-irradiated
- bought from Element 6 (through DDL)
- pad metallized by Rutgers University (TiW sputtered with shadow mask)
- metallization distance from edge $\approx 400 \ \mu m$
- Not used in PLT due to poor CCD performance
 - requires high field to collect full charge
- 2 edges polished

ETH Institute for Particle Physics

1st 3D scan

- Test parameters:
 - Bias voltage: -400V
 - 50 waveform averaging, 3993 scan points (~0.4s each)
 - Laser pulse energy: 0.2 nJ
- Parameters to extract:
 - electrons seem to drift differently than holes (uniform positive space charge?)
 - drift speed
 - electrical field configuration
 - trapping rate

. . .

Waveform analysis

- Total charge
 - Integral of the complete baseline corrected waveform

- Prompt current
- 0.3 ns-Integral around the center of the rising edge

Total charge

Prompt current

Electric field

ETH Institute for Particle Physics

Development of in-house sensor bump bonding Diego Alejandro Sanz Becerra (present)

Felix Bachmair (past)

Conclusions

- Diamonds make good particle detectors
- They used in a wide range of applications
 - beam abort, particle timing, x-ray beam monitoring
- At ETH we are working to better understand the properties of the diamond sensors
 - Radiation hardness study extended to 10¹⁷ protons/cm²
 - Study of rate behavior from 10 kHz/cm² to 10 MHz/cm² for diamonds irradiated to 4x10¹⁵ neutrons/cm²
 - Successfully tested two 3D diamond sensors with pixel readout
 - → $150\mu m \times 100\mu m$ cells and $50\mu m \times 50\mu m$ cells
 - e-TCT setup is fully operational
 - Bump-bonded our first diamond to a pixel readout using inhouse process

Outlook

- Continue study 3D detectors
 - irradiate them to full HL-LHC dose
- Interpret our eTCT results and test irradiated diamonds with it
 - Test 3D diamonds with it
- Optimize our bump bonding procedure and produce a full CMS pixel module with a diamond sensor
- In more distant future investigate building electronics on diamond

Thank you for attention

Extra Slides

ETH zürich Properties of diamond compared to silicon

		silicon ^a		natural	
				diamond b	
proton number	[]	14		6	
atomic number	[]	28.0855	[9]	12.011	[9]
lattice constant	[Å]	5.4310	[10]	3.5668	[10]
mass density	$[\mathrm{gcm^{-3}}]$	2.329	[10]	3.515	[10]
cohesive energy	[eV/atom]	4.63	[11]	7.37	[11]
melting point	[K]	1685	[10]	4100 ^(c)	[10]
band gap	[eV]	1.124	[10]	5.48	[10]
relative dielectric constant d	[]	11.9	[10]	5.7	[10]
resistivity	$[\Omega cm]$	$20 \times 10^{3 (e)}$		$> 10^{13}$	[11]
	$[\Omega \mathrm{cm}]$	$5 \times 10^{11} {}^{(f)}$	[3.2.3]	$> 10^{14} {}^{(g)}$	[3.2.3]
breakdown field	$[V/\mu m]$	30		1000	
electron mobility	$\left[{\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}\right]$			1500	[12]
		1450	[10]	2400	[13]
hole mobility	$\left[{\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}\right]$			1000	[12]
		≈ 440	[10]	2100	[13]
electron saturation velocity	$[\mathrm{cm/s}]$			2×10^7	[13]
hole saturation velocity	$[\mathrm{cm/s}]$			10^{7}	[13]
thermal expansion coefficient	$[10^{-6} \mathrm{K}^{-1}]$	2.59	[10]	0.81.0	[14]
thermal conductivity	$\left[\mathrm{Wcm^{-1}K^{-1}}\right]$	1.4		2023	[14]
energy to create <i>eh</i> -pair	[eV]	3.6	[15, 16]	13	[13, 17]
radiation length	[cm]	9.4	[9]	12.03	[3.75]
specific ionization loss	$[{\rm MeV/cm}]$	3.9	[3.3.1]	6.2	[3.3.1]
ave. no. of <i>eh</i> -pairs/ <i>mip</i>	$[\text{pairs}/100~\mu\text{m}]$	9000	[3.3.5]	3600	[11]
ave. no. of <i>eh</i> -pairs/ <i>mip</i>	$[\text{pairs}/300 \ \mu\text{m}]$	27000	[3.3.5]	11850	[3.3.5]

ETH Institute for Particle Physics

Dmitry Hits, IEEE, 2 November 2016, Strasbourg, France

Example of 3D detector drilling

Array 3: 10× transmission microscope image without and with crossed polarisers.

Electrode diameter is ~4.5um.

ETH zürich Reminder from the diamond past

- 2012 pilot run of PLT with single crystal CVD diamonds in the CASTOR region
- Reduction of pulse height at higher rate observed

Analysis procedure

- Perform pedestal analysis and subtraction
 - Correct for the common mode
- Cluster channels above threshold(s)
 - "seed" threshold, "hit" threshold
- Select events with only one cluster in each telescope plane
- Align telescope
- Select events with only one cluster in each telescope plane and only one cluster in the diamond plane
- Align diamond plane to the telescope
- Transparent analysis

article Physics

- require only "good" tracks in the fiducial region of the telescope
- no requirement on the diamond plane unbiased

Beam test analysis: clustering

- pedestal subtraction
- clustering
 - seed cut in diamond plane is 5σ
 - hit cut 3σ

Alignment

Correct for shift and rotation in telescope and DUT planes

Dmitry Hits, 9th International "Hiroshima" Symposium, 3 September 2013

Transparent analysis

- Telescope plus DUT is aligned on a subset of tracks
 - not used in analysis
- Use telescope to predict hit position in the DUT
- In 10 strips surrounding the predicted position find two neighboring strips with the largest pulse heights
 - Measure cluster pulse height
 - Measure resolution

ETH*zürich* Pulse height: 800 MeV proton irradiation

• scCVD diamond sample

ETH Institute for Particle Physics

- CCD = is measured to thickness for unirradiated
- Noise is on the order 80-110 electrons
 - < 1.6% of the mean pulse height for the highest irradiation dose
- Pulse heights for 2 highest out of 10 strips closest to the predicted hit position
 - Pulse height shown for bias +1000 V (negative are similar)

Noise in non-hit channels Common Mode corrected

Electric field calculations

$$I_{e,h} = A \cdot e_0 \cdot N_{e,h} \cdot e^{-teff} \cdot v_{e,h} \cdot W$$

$$I_{e,h}(t = 0) = A \cdot e_0 \cdot N_{e,h} \cdot v_{e,h} \cdot \frac{1}{d}$$

$$I_{e,h}(t = 0) = A \cdot e_0 \cdot N_{e,h} \cdot v_{e,h} \cdot \frac{1}{d}$$

$$I_{e,h}(t = 0) = A \cdot e_0 \cdot N_{e,h} \cdot v_{e,h} \cdot \frac{1}{d}$$

$$I_{e,h}(t = 0) = Constant \cdot v_{e,h}(E) \cdot E$$

$$0 = I_{e,h}(t = 0) - Constant \cdot v_{e,h}(E) \cdot E$$

$$I_{prompt} \text{ from data} \text{ scaling} \text{ Mobility model}$$

$$A \cdot Amplification e_0 \cdot e_0 + hairs (constant in first order)$$

$$V_{e,h} \cdot avg. drift speed of e&h W \cdot weighting field (=1/thickness for 2 parallel infinite 2D electrodes)$$

$$Mobility model$$

$$Mobility model$$

$$Mobility model$$

Use 'Bisection Method' to solve for **E** with the constraint that:

$$V_{Bias} = \int_0^d E \, dy$$

Analysis

- For each set of runs the signal region is set around most probable peak position for signal events
- Pedestal region is 40 ns or 2 bunch crossing in front of the signal region
- Pulser region is set around most probable peak position for pulser events

- Find a peak in the signal region
- Calculate an integral around the peak
 - for the following plots an integral (-5ns, +12.5ns) was used

List of cuts

- Range cuts
 - cut out the beginning of the run where the beam stopper and/or collimator changes
- Beam interruptions
 - cut out regions beam interruptions
- Pedestal sigma cut
 - cut out events with pedestal > 3*sigma_pedestal
 - removes events with signal in the pedestal region
- Pulser
 - cut out pulser events

List of cuts (continued)

- Tracks
 - one and only one hit in each plane
- χ^2 of track fit
 - select good tracks
 - with χ^2 in the lower 90% quantile
- Track angle
 - select collinear tracks
 - \rightarrow < 2 degrees divergence in x and in y
- Saturated
 - cut out events reaching maximum ADC range at any point of the waveform

ETH Institute for Particle Physics

Timing cut

- timing follows Gaussian distribution with $\sigma = (1.31 \pm 0.03)\,$ ns
- use cut (4 σ) based on this distribution to discard events with wrong timing
 - overlay of different buckets

List of cuts (continued)

- Bucket cut
 - due to 25 ns granularity of the fast-Or trigger and 20 ns bunch structure, coincidences between fast-Or in the later bucket and scintillator in the earlier bucket are possible
 - Only events with absolute peak in the right bucket are considered

DRS4 signal traces

Analysis

- Pedestal is removed
 completely by "all cuts"
- Basic shape
 of the Landau
 is not affected
- High end tail changes slightly after "track" cut

ETH zürich

20 .

10 -

-10 -

-20

-2

-1

r [µm] 0

Charge generation volume

2PA Region (Squared Intensity Profile)

0

z [mm]

Voxel

1

(2PA region)

- Beam profile from the knife edge scan
 - in air, not accounting for aberration in diamond
 - 2.0 mm => 4.8 mm

- 5

 $1/e^2$

2

ETH*zürich* Preliminary simulation results

RD42 data compared to NIEL hypothesis

ETH zürich

ETH zürich

Beam test of 3D pixel detector

- Testbeam at Paul Scherrer Institute in October 2016
 - 260 MeV/c positive pions
- Read-out chip setup
 - Threshold for accepting hits: ~1500 electrons

hit occupancy of $50 x 50 \mu m^2 \; 3D$

hit occupancy of $150 \times 100 \mu m^2 3D$

Dmitry Hits, Instrumentationseminar DESY/UHH,13 October 2017

ETH zürich Results (II6-B2, pCVD - pad detector)

- Average pulse height vs pion rate
- Pulse height was measured at several rate points between 2 kHz/cm² and 10 MHz/cm^2
 - no relative calibration between beam tests
 - scanned up and down up to 4 times to check repeatability
- Pulse height very stable after irradiation
 - slight rise in pulse height, ~5% before irradiation, probably due to surface preparation

ETH*zürich* Results (II6-97, pCVD - pad detector)

- Average pulse height vs pion rate
- Pulse height was measured at several rate points between 2 kHz/cm² and 10 MHz/cm²
 - no relative calibration between beam tests
 - scanned up and down up to 4 times to check repeatability
- Pulse height very stable after irradiation
 - slight change in pulse height, ~8% before irradiation, again surface preparation is a suspect, will check in the upcoming beam tests.

