

The High Energy Density Science Instrument at European XFEL

Instrumentation Seminar DESY, Hamburg, October 17, 2014

Thomas Tschentscher, European XFEL *thomas.tschentscher@xfel.eu*

International user facility for FEL research by a multi-disciplinary science community using soft & hard X-ray FEL radiation.

Multidisciplinary: physics, chemistry, biology, materials sciences, geo-sciences, ...
 User proposed experiments: peer-review, invitation, support
 Basic science: establish the foundations for future high tech applications

Hard x-ray instruments (>3 – 25 keV)

- MID Materials Imaging & Dyna.
- HED High Energy Density Sci.
- SPB Single Particle & Biomolec.
- FXE Femtosecond X-ray Exp.

Soft x-ray instruments (270 – 3000 eV)

- SQS Small Quantum Systems
- SCS Spectroscopy & Coh. Scat.

Provision for 2 more FEL sources and up to 6-7 additional scientific instruments

XFEL HED instrument: study matter at extreme states

In general: Matter under extreme conditions of temperature, pressure, electric and/or magnetic field strength

- Dynamic, often irreversible processes: 1. Condensed-matter at extremes
 - 2. (Near) solid-density plasmas
 - 3. Quantum states of matter

XFEL Content

Introduction to HED science with FELs

The HED instrument at European XFEL

Instrumentation challenges

HED = States with (additional) energy density of 10^{11} J/m³ (=100 mJ/(100µm)³. = A pressure of 100 GPa or a temperature of 5×10^{6} K or a radiation intensity of 3×10^{15} W/cm² or an elec. field strengths of 1.5×10^{11} V/m or a magn. field of 500 T

Thomas Tschentscher, European XFEL, Instrumentation seminar, 17/10/2014

Matter at very high T, P, p

Beyond condensed matter

Complex solids in high fields

Intense x-ray matter interaction

The solar planets

Thomas Tschentscher, European XFEL, Instrumentation seminar, 17/10/2014

XFEL Exoplanets

First discovery in 1990s

- Typically by indirect observations
- Kepler, CoRoT, SuperWASP

Observation methods

- Indirect: Transit (\rightarrow Int. oscillation), Radial speed (fre. osc.)
- Direct observation (>2004): Hubble, VLT, VLA

Today (Oct 02, 2014; NASA Exoplanet Archive)

- 1760 objects classified as extrasolar planets
- ~5000 candidates

'Earth-like' exoplanets

- e.g. Kepler-186f; few detected
- Conditions similar to Earth

XFEL Open questions in planetary models

Interior structure of different classes of (exo-)planets

- Super-Earths
- Hot Jupiters
- Neptunes

Relevant parameters

- Size of core, layer boundaries
- Melting lines, solid-solid phase transitions
- Accurate equation-of-state data
- Material properties: viscosity, conductivity
- Mixing and new phases (e.g. metallic Hydrogen)

Combine with observation data to develop better models for planet formation and interior structure

XFEL Condensed matter at extreme conditions

Surprisingly

Phase diagrams

Structures become more complex at high pressure

Structural rearrangement

Solid-solid phase transitions

Diff. macroscopic properties

- New structures that are unknown at ambient conditions
- Can these materials be recovered?

C.J. Pickard, R.J. Needs, Nat. Mat.9, 624 (2010)

XFEL Plasmas

 $=\frac{E_c}{kT_c}$

At very high P – T – ρ matter starts to ionize

- \Rightarrow plasma formation
 - The "fourth state of matter," in which the temperature is high enough that the electrons have been separated from their nuclei, leaving a gas of charged particles. (The atoms are said to be "ionized.")
 - The majority of stars, and hence most of the visible universe, is composed of plasma. It should really be called "the first state of matter."

Ideal plasmas

- Ideal gas approximation
- Only smooth background field, no binary interactions
- Iow density & high temperature

Non-ideal plasmas

- 'Strong-coupling'
- Collisions and correlations
- high density & low temperature

Γ~1

 $\Gamma \ll \mathbf{1}$

Transition from 'cold' solids to 'hot' plasmas

XFEL How to study matter at these extreme states

(Quasi-)static compression

- Use diamond-anvil-cells (DAC)
- Pressures

→ P <400 GPa

 \rightarrow T~few 1000 deg C

- Laser-heating
- Confinement

Dynamic compression

- Use lasers (or matter) to drive 'shock'
- Ablation of matter creates shockwave
- Specially shaped laser pulses can compress matter quasi-isentropic ('shockless')
- Can reach higher pressures, temperatures
- Dynamic: strain rate can be varied
- Short-lived (10s of ns)

15

XFEL Dynamic compression principle

courtesy J. K. Wicks

Excite solid matter to states of high P, T, rho

Dynamic compression

- Material properties at extreme P and T
- Structural & electronic properties
- Existance and properties of new materials
- \Rightarrow Application to planetary models

Isochoric generation of plasmas

- Measure properties of electron & ion systems
- Study effect of correlations
- \Rightarrow Understand/describe solid to plasma transition

Experimentally needed

- Strong drivers (lasers of various type)

 \rightarrow X-ray probe techniques \rightarrow access to microscopic structure & prop.

Complex solids in high magnetic fields

XFEL Motivation

Magnetic field strength as add. variable

- New structures & properties
- Phase transitions
- Mostly complex solids

Thomas Tschentscher, European XFEL, Instrumentation seminar, 17/10/2014

XFEL Pulsed magnet technology (I)

Large volume magnets
Fields of 30 up to 100 T
~1 MJ stored energy
X-ray geometry needed

HZDR 1 MJ, 100 kE, 1 GW

ESRF-LNCMI 30 T, 2 K, split-coil

Development goals

- >50 T fields
- Separate sample cryostat
- Split-coil geometry
- Optimized pulse duration/rate

Thomas Tschentscher, European XFEL, Instrumentation seminar, 17/10/2014

XFEL Pulsed magnet technology (II)

Thomas Tschentscher, European XFEL, Instrumentation seminar, 17/10/2014

Interaction of intense x-rays with matter

X-ray FEL pulses can significantly alter matter

single pulse exposure 10 keV, 1 μm focus, 70 μJ K. Yamauchi et al. European XFEL

Observation of saturable absorption

24

XFEL Interacting x-ray probe

In x-ray science it is typically assumed that the x-rays do not affect the probed system (non-invasive probe).

- For FELs this needs to be verified case-by-case
- Cross-section for photo-ionization significantly larger than for scattering

Thomas Tschentscher, European XFEL, Instrumentation seminar, 17/10/2014

European **XFEL** Use x-rays as a pump

X-ray energy is entirely absorbed in electronic system

- Photo-ionization
- Auger-processes
- Electron scattering

Features

- Isochoric heating
- Single-photon & sequential multi-photon ionization
 - → High ionization states
- 2-temperature plasma
 - → Hot (warm) electrons
 - **Cold ions** -
- 1.5 1.8 keV, Al, S. Vinko et al.,
- Transients Nature 482, 59 (2012)

(b)

13.6eV

10

 $\times 10^{5}$

Why use x-ray FELs ?

XFEL X-ray FEL radiation - general

Thomas Tschentscher, European XFEL, Instrumentation seminar, 17/10/2014

28

XFEL SASE vs. seeded FEL radiation

SASE

Thomas Tschentscher, European XFEL, Instrumentation seminar, 17/10/2014

XFEL How can x-ray FELs contribute to HED science

Very high definition of x-ray beam

- Spatial resolution
 - \rightarrow x & y few µm; z sample thickness / O(100 µm) possible
- Temporal resolution
 - \rightarrow 1 100 fs pulse duration; synchronization to OL ~10 fs shown
 - → No pre-pulse issues
- Spectral resolution
 - \rightarrow Natural bw ~10⁻² <10⁻³; seeded ~10⁻⁴; monochromatization 10⁻⁴ 10⁻⁶
 - → Bandwidth broadening to O(100 eV) under development

High intensity of pulses & high number of pulses (10 Hz)

- Single shot data collection
- Complex and flux-limited x-ray techniques can be applied
- Use x-ray pulse for driving samples (employing split & delay also probe)

Coherence \rightarrow Imaging

Introduction to HED science with FELs

The HED instrument at European XFEL

Instrumentation challenges

XFEL Overview HED instrument

X-ray properties

- 5(3) 25 keV
- 10¹³ 10¹¹ pths/pulse
- 1 200 µm spots
- 10⁻⁶ 10⁻² bw

Optical lasers

- MHz mJ 15 fs
- 10 Hz 100 J ns (shaped)*
- 10 Hz 100 TW 40 fs*
 - * HIBEF contributions

Setups & techniques

- 1 multi-purpose
- 2 dedicated

XRD, SAXS, XAS, IXS, imaging other European VEEL

XFEL The HED instrument

33

Enable the use of x-ray excitation, scattering, diffraction, spectroscopy, and imaging techniques

- Large flexibility in setups
- Use of various pump sources to excite samples (OL, XL, ext. fields)

Integrate strong excitation sources in instrument design

- High energy/power optical lasers
- Pulsed magnetic fields
- Pulsed electric fields

34

XFEL "Laser plan" for the HED instrument

Start of operation

- PP laser system (mJ; MHz; 15–100 fs & 10 mJ, 100 KHz, ~1 ps)
- 100 TW ultrashort pulse laser (few J; 10 Hz; 40 fs) [contributed by HIBEF UC]
- 100 J nanosecond laser (100 J; 1–10 Hz; 1–20 ns) [contributed by HIBEF UC]
- Small systems (VISAR, etc.)

 \rightarrow rel. laser-plasma IA

Thomas Tschentscher, European XFEL, Instrumentation seminar, 17/10/2014

HIBEF: Helmholtz International Beamline for Extreme Fields

Spokesman: T.E. Cowan (HZDR) Co-PI's: U. Schramm (HZDR), E. Weckert (DESY), T. Stoehlker (HIJ)

HIBEF User Consortium: HZDR, DESY, HIJ, CFEL, DLR, FZJ, GFZ, GSI, HZB, MBI, MPIC, MPIK, MPI-S, MPQ, MPSD, U Bayreuth, HU Berlin, TU Darmstadt, TU Dresden, U Duisburg, U Frankfurt, U Freiburg, U Hamburg, FSU-Jena, LMU-Munich, TU Munchen, U Rostock, U Siegen, U Graz, TU Wien, PSI, EP-Lausanne, IOP-ASCR, CTU-Prague, CLPU-Salamanca, UPM-Madrid, IRAMIS-CEA, CEA-Arpajon, CELIA-Bordeaux, ESRF, Jussieu, LULI, UPMC, LNCMI, U Toulouse, U Pecs, U Szeged, Weizmann, U Roma, MUT-Warsaw, NCBJ-Swierk, U Wroclaw, IST-Lisbon, JIHT-RAS, Stockholm, Umea, Uppsala, Cambridge, Edinburgh, Imperial, QUB, UCL, Oxford, Plymouth, STFC-RAL, SUPA, Strathclyde, Warwick, York, Eu-XFEL, ELI-DC, EMFL, IOP-CAS, Peking Univ, SIOM, SJTU, Tata IFR, RRCAT, GSE-Osaka, ILE-Osaka, KPSI-JAEA, U Kyoto, Alberta, BNL, UC Berkeley, Carnegie Inst. Wash., General Atomics, LANL, LBL, LLNL, U. Michigan, ORNL, OSU, U. Penn, Rockefeller U, SLAC, UCSD, UNR, U Texas, WSU

High energy lasers

- initially 100 TW/10 Hz & 100 J/10 Hz
- Future upgrades

Pulsed magnetic field setup Diagnostics, spectrometer, etc. Man-power

Operation

HELMHOLTZ ASSOCIATION

XFEL X-ray FEL shock front imaging

Imaging experiment performed at LCLS in May 2012 (A. Schropp et al.)

- FOCUSSING/imaging technique : schropp et al., Sci. Rep.<u>3</u>, DOI: 10.1038/srep01633(2013)
- 7.0 & 8.2 keV
- Phase-contrast imaging mode
- Using diverging beam projection

Focal spot size ~120 nm (mono); beam divergence ~1mrad; f.o.v. ~100 µm

Thomas Tschentscher, European XFEL, Instrumentation seminar, 17/10/2014

2ns

XFEL X-ray FEL shock front imaging

Test sample: glass

- 8.2 keV
- Phase-contrast imaging mode
- Using diverging beam projection

Accessible parameters

True sample: iron

- 7.0 keV
- ns movie

• Volkswagen**Stiftung**

 \rightarrow Shock velocity, density change, deformation

length & time scale, viscosity

(all data: A. Schropp et al.)

Thomas Tschentscher, European XFEL, Instrumentation seminar, 17/10/2014

XFEL Coherent imaging of density fluctuations

Relativistic laser-matter interaction

- Needed:
 - → Ultrafast probing (space- & time-resolved) of B, Z*, j_e, T_e inside solid matter
- Employ advanced x-ray techniques
 - → XCDI, holography, SAXS, XRD, WAXS, XPCS, XANES, IXS, ...

XFEL X-ray diffraction of shocked copper

D. Milathianaki et al., Science 342, 220 (2013)

XFEL X-ray diffraction of shocked copper

Observables

- Phase transitions
- Melting
- Elastic stress 73 Gpa
- Strain rate 10⁹ s⁻¹

D. Milathianaki et al., Science 342, 220 (2013)

XFEL X-ray (inelastic) scattering

free electrons

- Ionization
- Ion properties

L.B. Fletcher et al., JINST 8, C11014 (2013)

The HED science instrument at European XFEL

XFEL Self scattering at hard x-rays & solid Al

42

L.B. Fletcher et al., JINST 8, C11014 (2013)

XFEL High resolution inelastic x-ray scattering

Si(4,4,4): △E/E=5 · 10⁻⁶

Working conditions: Bragg angle @ 9_{PM}=87° E_{PM}=7919.1 eV ΔE_{PM}~100 meV

Sensitive to the seed crystal angle at the level of 0.001°

Thomas Tschentscher, European XFEL, Instrumentation seminar, 17/10/2014

XFEL Synchronization

Distribution of clock by optical laser

- Very accurate & length corrected
- Measure arrival time of e-
- Feedback to accelerator RF
- X-ray-to-OL within 10s of fs

X-ray split & delay units

- Crystal-based (MID)
- Multilayer-based (HED)
- fs to few ps
- Stability ~fs, limited by mech. stability

S. Roling, H. Zacharias, et al., SPIE conf 8504, 850407 (2012) BMBF project s 05K10PM2 & 05K13PM1

Introduction to HED science with FELs

The HED instrument at European XFEL

Instrumentation challenges

XFEL Instrumentation challenges

Deliver x-ray beam of varying spot size

- Spot sizes of <1 μm to 200 μm</p>
- Full flux & full flexibility

10 Hz repetition rate experiments on solids

- Replace samples accurately
- Sample debris
- High power laser operation

Identifying flexible & efficient exp. configuration

- Vacuum interfaces
- Detectors

High field environments

Optical lasers & pulsed magnets

Integration of all sub-systems

- Complex standalone systems
- Enabling operation by users

European XFEL Acknowledgements

HED team at European XFEL

K. Appel, M. Nakatsutsumi, I. Thorpe, B. Müller (guest), G. Priebe (OL)

Other European XFEL

L. Batchelor, H. Sinn, G. Palmer, C. Deiter, A. Madsen, T. Roth, T. Haas,

G. Wellenreuther, B. Becker-de Mos, S. Kozielski. W. Tscheu, A. Lalechos,

V. Lamayaev, J. Schulz, M. Lederer, and many more

HIBEF User Consortium

T. Cowan, A. Pelka, A. Ferrari (HZDR), E. McBride, H.-P. Liermann,

J. Strempfer, M.v. Zimmermann (DESY), U. Zastrau (U Jena),

HED ART

P. Audebert, A. Higginbotham, Hae-Ja Lee, R.W. Lee, H.-P. Liermann, D. Neely, P. Neumeier, K. Sokolowski-Tinten, S. Toleikis

plus

F. Dorchies, J. Hastings, G. Monaco, A. Schropp

XFEL Summary

HED science applications at X-ray FEL facilities

- employ new x-ray pulse properties : fs duration high power coherence
- science applications appearing

New platform for studying matter in extreme states

- Instruments operating at LCLS and under construction at SACLA and European XFEL
- Coupling to high energy optical lasers for matter compression
- Develop and exploit various x-ray techniques for probing \rightarrow in progress
- Possibility to use x-rays for excitation \rightarrow requires further study

Start-up of European XFEL in full swing

- Civil construction completed; Installation of accelerator starts now
- First light by end of 2016; Early user runs in 2017
- HED instrument take first beam early 2017; high energy lasers should be available 4th Q 2017 for user experiments