Trends and Perspectives in Electronics for HEP experiments

J. Christiansen CERN/PH-ESE

Acknowledgements to all my group, CERN, HEP colleagues. None mentioned, non forgotten

Quick outline History (past – now - future) Readout architectures Electronics required for different detectors Pixels, strips, calorimeter , , Electronics technologies Integrated circuits, Interconnect, links, power conversion Our major problem: Radiation tolerance

#### Past

Electronics has been one of the major ingredients to develop modern HEP experiments:

- Improved performance: Position, Amplitude, Time, etc.
- Lower noise
- Higher channel counts
- Higher integration: IC integration, low power
- Higher readout rates
- Sophisticated high rate trigger systems
- High reliability
- Radiation tolerance
- DAQ is also electronics, but not any more "home made"

#### At affordable cost

Extensive electronics engineering expertise required in HEP community







# Now (the LHC experiments)

- Radiation "tolerant" Front-End electronics (cavern, muon, calorimeter):
  - 0.7um 0.35um CMOS/BiCMOS ASIC's
  - Qualified COTS
- Radiation hard FE electronics (trackers)
  - 0.25um CMOS (Qualified standard commercial)
  - 0.8um DMILL BiCMOS (specialized technology, phased out).

#### **Optical links**

- Custom TTC (Timing, Trigger and Control distribution)
- Custom analog (CMS tracker)
- Custom digital (GOL serializer, ATLAS tracker)
- Commercial digital

#### Power

- Rad tol/hard linear regulators
- Rad tol power supplies (cavern, calorimeters)
- **FPGA's** for fast and sophisticated trigger systems
  - FPGA's/DSP/CPU's for DAQ interfaces
- Critical integration of electronics, detectors, mechanics, cooling
  - Required material for cables, cooling an unpleasant "surprise".
- A significant fraction of the cost and R&D needed to develop these experiments is in the electronics







#### Future HEP electronics

- Better resolution -> More channels-> Higher integration -> IC and interconnect technology.
- Low mass trackers -> Minimize cables, cooling, services -> Low power -> Low power IC technology and efficient power distribution
- Acquire more data at higher rate -> High density, high speed data transport
   -> IC technology and optical links.
- Hostile radiation environment -> Radiation hard technologies
- High reliability > Efficient QA procedures
- Low error rates -> Well designed systems and IC's with SEU's immunity
- High speed flexible data processing -> FPGA based trigger systems, CPU based DAQ farms (assumed off detector)
- Large and complicated systems -> Well designed systems and critical subsystem integration -> Extensive system/sub-systems simulation/verification, Integration tests, Coordination.

At affordable cost in a world-wide distributed community.

Electronics technologies for this must come from commercial market, but significant efforts required to adapt this to our environment: Radiation, low mass, mixed signal, integration, etc.

### Global architecture I

Global front-end/readout architecture has major effects on electronics

 Architecture in fact determined by electronics capabilities/limitations

Triggered: Global event selection with local data buffering (and processing) to minimize readout data

- Data buffering in hostile environment
- Specific local processing (trigger towers, , , loss of flexibility ?)
- (Local data sparcification/zerosuppression)
- Complicated front-end systems
- "Moderate" number of links

High rate experiments (LHCb, ATLAS, CMS, )



### Architecture II

- Trigger less: Minimal local processing, high speed data transport
  - Send out all "raw" data ASAP
    - Synchronously for easy pipelined event processing
    - Sparcified/zero-suppressed with time tag to minimize data (links)
  - Simple high speed front-ends.
  - Large number( >10k) of data (optical) links
  - Flexible data processing in counting house using latest commercial FPGA's/DSP/CPU/PC (No radiation)
  - Moderate rate/size experiments (LHCb upgrade, CLIC/ILC, , )



## **Pixel detectors**

- Pixel detectors are our IC technology drivers as high integration level vital
  - Better resolution -> Smaller pixels, Higher integration
    - Binary versus analog (TOT) readout.
  - Smaller pixels -> Smaller capacitance -> Better S/N -> smaller analog power
    - Limited by pixel to pixel capacitance
    - More pixels, Higher rates (radiation), More features, Data buffering in pixel , -> More logic/storage per pixel -> Higher integration, **Low power** digital required
      - Material in today's pixel detectors are determined by cabling, power distribution, cooling, , , sensors, ASICs
      - Complicated digital pixels: Full custom -> Synthesized high density standard cells, Pixel grouping (pixel regions, super pixels)















# Hybrid Pixels

#### Decoupled ASIC and detector technology

- Standard high density ASIC technology
- Dedicated sensor technologies (Planar, 3D, Diamond, , )

#### High cost of bump bonding ASIC and detector

- Multiple technologies under evaluation in HEP
- Bonding technics from 3D IC technologies will hopefully bring improvements on this (more on 3D later)

#### Material: Thinning ASIC to 50 – 100um

Delicate combination with bump bonding

#### High radiation level and high rate applications:

- LHCb upgrade with pixel vertex detector
- ATLAS/CMS phase 2 upgrades: RD53.

#### "Limited" by bump bonding, material, cost



ATLAS FEI4 50 x 250um







9

# **Monolithic Pixels**

- Aim: Lower cost, Higher resolution, Lower mass
- Diffusion based : Charge collection (~100ns)
  - Epi (epitaxial layer), DEPFET (internal gate)
  - Relatively low rate and low radiation
- Drift based: SOI (KEK), LePix bulk triple well (CERN),
  - "HV" bias critical
  - Can possibly work in LHC environment
- Simple pixel cells (few transistors)
  - Rolling shutter
    - Limited rates, Significant boundary circuits needed.
  - Digital cells in pixel, Cross talk problems
- HEP needs 100% fill factor
- Stitching to make "large" pixel modules
- Challenges: Radiation tolerance, Speed, Rates: on-chip/in-pixel buffering/processing, technology dependence.

#### SOI Pixel Detector Radiation PMOS NMOS BOX(Buried Oxide) n+ Si Sensor (High Resistivity Substrate) +-



SOI, KEK



# Alice inner tracker upgrade

- **Novel MAPS** based tracker system for ~2018
  - Replaces 3 tracking detectors: Pixel, Strips, Silicon drift
  - High track multiplicity of 115/cm<sup>2</sup> per event at 50KHz interaction rate : 5MHz/cm<sup>2</sup> (inner layer)
- Detector Front-end Interconnect
  - 22 x 22 um<sup>2</sup> MAPS: Binary
  - 10 m<sup>2</sup>, 25k 15x30mm<sup>2</sup> Pixel chips, **25G pixels**
  - Modest radiation: < 1Mrad , < 10<sup>13</sup> 1Mev n<sub>eq</sub>/cm<sup>2</sup>
     Enables use of MAPS
  - 180nm CMOS imager sensor technology
  - Status: Design and testing on-going
- Module/stave Interconnect:
  - Bump bonding of thinned chips (50um)
- Readout:
  - Event trigger (50KHz): <1Gbits/s per pixel chip</p>
  - Electrical links to intermediate patch panel
- Power:
  - Aims at very low power consumption: ~50mW/cm<sup>2</sup>











- 6 metal layers
- epi layer between ≳ 1 kΩcm, 15-18 µm
- Deep Pwell shielding

#### CMS/ATLAS Phase 2 pixel challenges

#### Extreme particle rates: ~500MHz/cm<sup>2</sup> (inner layer)

- Hit rates: ~2(3) GHz/cm<sup>2</sup> (factor ~16 higher than current detectors)
- Assuming max 140 (200) pileup and 25ns crossings
- Smaller pixels:  $\sim \frac{1}{4}$  ( $\sim 50x50um^2$  or  $25x100um^2$ )
  - Increased resolution
  - Improved two track separation (jets)
  - Outer layers with larger pixels, using same pixel chip
    - Lower power low material, lower cost
- Increased readout rates: 100kHz -> 500KHz 1MHz
  - Data rate: 10x trigger X >10x hit rate = >100x !
- Increased buffering: 10x latency x 10x hit rates = **100x**
- Unprecedented hostile radiation: ~1Grad, ~10<sup>16</sup> Neu/cm<sup>2</sup>
  - Hybrid pixel detector with separate readout chip and sensor.
     Monolithic seems unfeasible for this very high rate hostile radiation environment
  - Phase2 pixel will get in 1 year what we now get in 10 years
- Low mass -> Low power, Critical and very challenging
  - Can we maintain same low power as now ? , Increase by <2x ?
  - Pixel sensor(s) not yet determined
    - Planar, 3D, (Diamond, HV CMOS), Final choice may come late
    - Charge information/Binary ?
- Complex, high rate and radiation hard pixel chip required and critical -> RD53 collaboration
  - 1 year old, 20 institutes, ~100 collaborators,
  - Working groups: Radiation, Top, Analog, Simulation, IP blocks, Top level, IO
  - Radiation tolerance of 65nm baseline technology Critical





Pixel chip with <512 x 512 pixels of 50um x 50um



#### Pixel photon detector

- Integration of a pixel detector in a photon tube: Hybrid Photon Detector
  - Electrostatic acceleration and focusing of photon-electrons on pixel detector.

#### Single photon detection in LHCb RICH

- Very low noise
- Same pixel chip as used in "classical" pixel detector in Alice

#### Integration in vacuum tube difficult

- Bake out, vacuum tightness, out gassing, etc.
- "Discontinued"
- Revival based on new pixel chips ?.
- Many potential applications using HEP pixel chips in HPD's, MCP, ,









# Building pixel systems

- Building low mass hermetic pixel detectors from relatively small pixel modules/assembles far from obvious
  - 100% coverage, Small assemblies, Modules, Power, cooling, readout, ,
- Ladders, modules, edgeless detectors, ,
  - Future:
    - Stitching (to make very large pixel ASIC's)
    - TSV (Through Silicon Via's) to have
      - abuteable pixel assemblies ?
        - TSVs are "surprisingly" difficult
    - Micro channel cooling ?









# Strip detectors

High resolution tracking over large surfaces Coolina In TTC, Data (& DCS) fibers Pixels too expensive. MAPS can change this Ladders, long strips, short strips, strixels CMS and ATLAS upgrades: Binary. Analog power decreases when going to 130/90 nm. 65 nm may not give significant gain. Digital power gets dominating so use of modern Buscable technologies gives lower power. ADC per channel in future ? Hybrids Very low power 8/6bit SAR ADC or TOT. Connection between FE chip and detector: Wire bonding or tap or bump? Integration in stave/rod or modules ? Powering: CMS DC/DC ATLAS Serial power or DC/DC 256





# Combining pixel/strip trigger

- CMS track trigger
  - At HL-LHC first level trigger saturates
  - Include tracker Pt information in first level trigger
    - Send track information for tracks with high Pt.
    - ~1 order of magnitude data reduction from Pt cut
  - Sufficient Pt resolution, short latency, bandwidth , ,
    - Double layer modules with correlation
      - Strips strips in outer part
      - Strips Macro pixels in inner part (to get Z)
      - Critical: Low mass as not to destroy tracker resolution: Low power, high interconnectivity, Critical interconnect technology and module assembly

Challenging off-detector correlation/trigger logic
 ATLAS: Two level trigger with Region Of Interest (ROI)











# Full DSP approach

- The world is going digital: ADC plus powerful DSP processing can be integrated in front-end chip.
  - Digital shaping, baseline restorer, pulse detection, zero-suppression, time tagging, clustering, pulse parameter extraction, compression, buffering, link/DAQ interface
- Very low power ADC's extensively developed by industry over the last decade.
  - Can be bought from specialized IP companies (do not develop ourselves if not required)
  - Extreme: ADC per pixel -> ~200k ADCs per chip: TOT or SAR
- DSP processing at low power: modern technology plus power optimized architecture and design.
- Required integration possible with modern technologies
- Example: S-ALTRO prototype: 16 channels, ~1W, 130nm CMOS
  - No significant crosstalk from digital to analog
  - Power dominated by home designed ADC (~60%)
- Realistic future aim: 64 channels, 12/10bits, ~1W.
  - Applications: TPC, GEM, Micromegas, Calorimeters, ,
  - Pulsed power can reduce power considerable in certain applications (e.g. ILC/CLIC)



### Calorimeter

- Large dynamic range: Low power, 40MHz 14/16 bit ADC's now available as standard multichannel chips and as IC IP's.
  - Good alternative to custom made multi range analog memories
  - Our usual problem: Radiation tolerance. COTS versus modified IP's
- Particle flow: Many channels (10<sup>8</sup>), lower resolution per channel, Low power critical (power pulsing in ILC/CLIC)
  - CALICE (ILC) currently using multi gain multilevel analog memories (low power, low cost)
  - Multichannel ADC/DSP seems promising for this in the future.

Parallel high speed optical links now makes it viable to perform direct ADC in front-end and send all raw data to off-detector processing for "classical" calorimeters.

- Allows very flexible FPGA based calorimeter trigger systems
- Original CMS Ecal architecture, but abandoned because of cost/implementation of the ~100k links.

High time resolution forward calorimeter (next slide)



# Timing detectors

- High channel count, very high time resolution (~10ps) detectors feasible with novel electronics and detectors
  - TOF, RICH, Calorimeter detectors: MCP, SiPM, MG-RPC, MAPMT,
    - LHCb Torch, FP420, HPS, CMS forward calorimeter
- Fast ADC's: 55GHz, 8 bit, 2W
  - How to deal with the massive data flow and power?
- Fast analog memories: 1 10GHz Sampling, ~1GHz bandwidth
  - High time resolution with software pulse fitting to known reference pulse
  - Multiple chips made in community: PSI, LAL, Hawaii Chicago,
  - Limited number of channels, limited memory, power, external ADC
  - TDC with Constant fraction or TOT time walk compensation (E.G. ALICE TOF) .
    - ~ps TDCs feasible in modern IC technologies (e.g. 2ps in 130nm) Clock •
    - ~10ps TDCs can now be implemented in FPGAs

Very high speed circuits now possible with limited power, but requires fast detectors





J.-F. Genat et al., arXiv:0810.5590 (2008)



TN

100ps

200.0

Time (s)

Rise Time

95 ps

100.00



S. Ritt, PSI

"Time stretcher"  $GHz \rightarrow MHz$ 

Single Photon 16-averaged Sampling: 18 GS/s

3.2 µm pore MCF

400.00

6 um pore MCP

300.0p

Shift Register

J. Milnes, J. Howoth, Photek

# NA62 GTK

- 300um x 300um pixel detector with ~200ps resolution (ASIC: 75ps)
- 3 stations (10 ASIC's, 1 pixel sensor) with very high particle rate:
   ~1GHz
- Time walk compensation with TOT (CFD also evaluated)
- High radiation levels (secondary beam goes straight trough)
- Demonstrated in beam test with 130nm prototype
- Final 40 x 45 pixel array ASIC available (test with sensor ASAP)
- Pixel detectors with this kind of time resolution can open up new applications of pixel detectors in HEP, medical, material science, bio chemistry, , ,
- What determines ultimate time resolution with silicon pixel?
  - Signal variation across pixel, signal/noise, Signal generation in silicon itself (e.g. 3D detectors)
  - Pixel ASICs and requirements for "low power"







# **Digital Photon counting**

- Single photon counting with SPAD/GAPD array with integrated electronics
  - Use of "standard" IC technology
     SPAD bias only needs a few volts
  - Optimization of SPAD difficult
    - Dark count rates, cross talk, efficiency , ,

#### Photon counting, High time resolution

- 32 x 60um micro-cells/pixels
- Up to 80% fill factor
- Integrated TDC, readout, configuration , ,

#### Enormous effort in development

- Foundry (NXP 180nm) and user (Philips *medical*) originally part of same large company
- Aimed at applications with high system costs (medical scanners)
- Investment that will be hard to find in HEP
- PH detector seminar: https://indico.cern.ch/conferenceDisplay.py?conf Id=149010
- "Open" to let HEP use their technology
- Other groups/projects develops similar SPAD detectors/chips



### On-detector power distribution

ED (CONSTANT CURPENT

- Distributing low voltage power in large experiments, without local power conversion, impractical/impossible
- Voltage drops -> power loss -> large cables -> material
   Modern technologies use lower supply voltages: 5V, 3.3,
   2.5, 1.2, 1.0V (down side of new low power technologies)
  - Upgrades: Assume same total power (as more channels) the power supply currents will increase and power loss in cables increases with I<sup>2</sup>
  - Local power conversion becomes a must.
  - Power conversion must occur in very difficult environment: Radiation + magnetic field + minimal power dissipation + minimal mass.

#### DC/DC: Inductive (module), Capacitive (on-chip)

- High input voltage (low cable currents), high efficiency
- IC technologies that can stand high voltage are not radiation tolerant
  - Compromise: Medium voltage (10v) but still problematic
- Inductive and capacitive DC/DC conversion
  - Radiation tolerance of technology a critical issue (two promising technologies used)
  - Shielding and appropriate EMC handling critical but have been successfully verified on silicon strip detector modules

Serial powering: Distribute current and generate locally voltage. Tested by ATLAS SCT.

- Grounding and fault isolation delicate
- Power pulsing: significant gain possible for certain experiments (ILC/CLIC), but not trivial



22

# **Optical links**

GBTX

#### Information types : Readout, Trigger, Timing, Slow control, Timing & Time

- Past/current: Separate links
- Future: Merge all in one bidirectional optical link

#### Must be high speed and highly reliable

Redundancy in critical cases

#### **Radiation problems:**

- Laser deterioration
- PIN receiver deterioration
- Induced multi bit error signals in PIN by particles. Use of extensive forward error correction.
- SEU's in electronics circuits

#### Versatile / GBT link project

- Identify and qualify appropriate Lasers and PINs
- On-detector rad hard chip set: Laser driver, Pre-amplifier, interface chip (GBTX), control chip.
- Off-detector: Commercial Opto and FPGA's

#### Parallel links for high data rates

- Custom array transmitters/serializers (ATLAS)
- Fiber ribbons
- Commercial array receivers (optical engines)
- **FPGA** deserializers









# **CMOS** photonics

- IO is becoming critical bottleneck for high end multi-core CPU's servers (CPU <-> Memory)
- Now: High speed electrical serial connections
- Future: Hybrid optical chips/links
- Dream: Integrating opto electronics in (on 3D) Integrated circuits
  - On-chip optical modulators, waveguides and receivers (laser source problematic in Si)
     Available when ?.
- Electrical links are still more cost efficient (power) for short connections
  Dream for HEP: Each Front-end chip has an
  - optical output. Many challenges
    - Radiation
    - Access to technology
    - Cost of technology
    - Design complexity of such mixed technology



M. Ritter, IBM, TWEPP2010

# Off detector

- FPGA's: Fast, flexible, Improves quickly, Firmware "portable", The perfect devices for HEP when no/limited radiation.
  - CPU's/DSP: Mainly for DAQ interfaces
  - Mixing FPGA's, DSP, CPU's on one module
    - Can give very high performance and very flexible modules but implies a huge investment in firmware (FPGA, DSP, CPU, operating system, , ,)
    - FPGAs can now have DSP, CPU on chip.

#### Crate based

- Not (slow) shared parallel bus (e.g. VME)
- Switch fabric: Multiple high speed serial links on backplane to centralized switch/controller (High speed LAN on backplane)
- Power, cooling, front-panel, standardization but flexible, hot swap, reliable, affordable
- ATCA, uTCA, VXS (VME with extra serial link connector) are major candidates for HEP
- **ATCA and uTCA** gets increasing interest by HEP community (uTCA for physics standardization)
- Trigger systems, DAQ interfaces

#### Plugged into computer: PCIe (LHCb upgrade)

- No expensive crates (e.g. link to front-ends)
- Challenges:
  - Keeping up with changing PC's
  - Cooling of hot FPGAs and opto







# IC technology for HEP

#### Critical to make front-end systems

#### What we want:

- High integration level
  - This exists (e.g. 22nm) but hard for us to access because of problems below
  - The most sophisticated technologies may not even be technically appropriate for us.
- Appropriate for mixed analog/digital designs
- Radiation tolerance: >100Mrad
  - Non trivial and requires significant effort to find and qualify technology
  - Special design approaches (and special libraries).
  - Strict export restrictions.
  - Technologies below ~65nm uses "exotic" gate isolation sandwiches where radiation tolerance needs to be qualified/proven

#### Affordable access

- Sophisticated technologies have very high masks costs but is relatively cheap to produce in very large quantities (exactly the opposite of what we need)
- We may even not be allowed access, as too small a client.
- Regular MPW runs vital to share mask costs for prototypes and small scale production
- Easy to use for relatively small HEP IC design groups
  - Modern technologies and tools get more and more complicated
- Extensive libraries and IP
  - IP blocks often exists, but may be unusable to us because of radiation (& "too" expensive)
  - Our community has a tendency to make all our selves (limited funding in R&D phase, manpower available, must keep students occupied , ,)
- Available for long time (+10years)
  - This may not be the case for certain technology nodes (select strong nodes, bet on the right company) 26

# IC technology

#### HEP options

- Use easily accessible, cheap and mature technologies:
  - Life time, rad tol, Limited integration
- The community gets together (e.g. via CERN) to use one "modern" technology from a strong technology node, radiation qualify this and get/develop required libraries and tools.
  - LHC: 250nm CMOS
  - LHC phase 1 upgrades: 130nm CMOS
  - LHC Phase 2 upgrades: 65nm CMOS
  - Skipping every second node because of long HEP project schedules and limited resources to import/qualify technology.
- Join with similar communities (e.g. EU Europractice)
- Specialized technologies:
  - "HV" for DC/DC,
  - Monolithic pixel,
  - HV CMOS sensor
  - CMOS photonics,

#### Learning how to use these technologies

- HEP/CERN community
  - Training sessions in use of technology and related tools
  - Micro Electronics User group
- Euro-practice training program on tools and technologies



#### 250nm CMOS



## Next IC technology for HEP

- 65nm seems to be a promising/realistic technology for future long term HEP developments (e.g. LHC phase 2)
  - Well established ~10 year old technology
  - Confirmed to be a strong node
    - Extensively used for many long term components (Industrial, Automotive, Space, etc.)
  - Affordable
    - Small MPW submissions: 50 100k CHF
    - Dedicated engineering run: ~2 x 130nm = ~1M CHF
  - Still uses classical "SiO<sub>2</sub>" as gate insulator
  - Excellent radiation characteristics (up to ~200Mrad)
- Will be available very soon
  - Appropriate Libraries, IPs & tools for HEP institutes
  - NDA issues: >12 months (lawyers makes more money than engineers)
- Do we need and can we afford/manage more modern IC technologies ?



Edgeless transistor (ELT) Used in 250nm CMOS





# IC tech from CERN

- 250nm, 130nm, (90nm) and 65nm coming
  - 250nm: workhorse for all rad hard circuits in current LHC experiments
  - 130nm: LHC phase 1 upgrades
  - 65nm: LHC phase 2 upgrades .
- CERN supplies/organizes:
  - Technology selection and rad qualification
  - Frame contract and MPW access
  - Design kit, Libraries
  - HEP users: ~50 world wide institutes
  - 5 day training, 7 courses, 70 Engineers





### 3D IC technologies

#### Dreaming about the perfect 3D IC technology

- Affordable, Accessible, Reliable, High yield, ,
- Mixing technologies (Analog, digital, sensor)

#### Several HEP institutes teamed together to get access to Chartered/Tezzaron process

- Chips have been in the pipeline for several years
- Low yield
- TSV Technology have now been modified
- We may still need to wait for this to mature

#### Will 3D IC become available (to us) ?

- Before IC technology hits a technology wall (10nm ?)
  - Why use 3D in 130nm when one can "easily" migrate to 65nm ?
  - Yield is a major problem
- One obvious candidate: Stacking of memory chips
  - This is more 3D packaging as only coarse TSVs needed at boundary









# 3D technologies

- 3D is fashion, but be careful with confusion between different 3D's
  - 3D transistors (Intel <22nm technology)</li>
    - To be capable of continuing Moore's law without excessive transistor leakage.
      - Controls current flow from 3/4 sides of transistor
      - 37% speed improvement from previous technology (32nm) or half power at same speed
      - Expected to scale down to <10nm
    - We can not (yet) get access or afford this
    - Alternative: Fully depleted SOI (Silicon On Insulator)
  - 3D IC's
    - Multiple active layers connected with (small) TSV
  - 3D packaging/integration
    - Stacking chips on top of each other using:
      - Wire bonding
      - Bump bonding
      - TSV + bump bonding

3D detectors





Traditional Planar Transistor

Combined with micro channel cooling Dream ?.



22 nm Tri-Gate Transisto





### System on chip

- Large design effort required to design complicated system on chip implementations
  - Large and well integrated design team
    - Intel makes the office floor plan equal to the chip floor plan
  - Significant design time
  - Significant funding
  - Any small mistake makes the design fail
  - Efficient use of modern high level (digital) and low level (analog full custom) design tools
     These tools are complicated
- Example: FEI4 collaborative effort
  - Large mixed signal pixel chip (19 x 20 mm)
  - Developed in collaboration across multiple institutes (~5) spread across the world
  - Used dedicated tools to monitor/control status and changes of each block
  - Handling radiation effects and SEU.
  - Successfully used for ATLAS IBL upgrade
- Things will get more complicated for future complex chips in 65nm: <u>"Full DAQ system" on a single chip</u>
  - RD53 ATLAS/CMS/LCD pixel collaboration

End of Digital Columns Log Toke Date 25b L1T. Token, Read End of Chip Logi Data Output Hamming Data Format/ Hamming Hamming Block FIFO Encode Decode Compress 8b10b Encode Bias Configuration EFUSE DACS Serializer Register Generato Ref. Onto Voltage Shunt DC-DC Powe Command Decoder 4 to1 Mux Pad Frame



# SEU

- Radiation induced SEU's is a major worry in our front-end chips
  - New technologies get more sensitive (and we get multi bit errors)
- Different types of data must be protected differently:
  - Hit data (loss of single hit, or noise hit)
  - Data flow control (system synchronization)
  - Configuration (chip malfunction until reconfigured)
  - PLL, etc.
- Appropriate design methodologies required (TMR, Hamming)
- Design, test, fault injection, design verification, production testing, etc.
- SEU's provoked by background radiation now becomes "visible" in high complexity high availability commercial applications
  - Cosmic's, Radioactive isotopes (e.g. from materials used in electronics packaging)
  - Automotive, Telecom and network infrastructure, Computer servers (e.g. centralized banking/ reservation systems)
  - They also start to apply special techniques to resolve this and some tools start to appear.



# COTS

- Use COTS (Commercial Of The shelves) where ever possible (when no radiation !)
- In radiation environments
  - Radiation qualification (TID, SEL, SEU) of a component is a significant workload
    - Predictions from similar circuits can be misleading
  - Difficult to assure that circuits purchased later will have same radiation tolerance (change of process, different fab., second sourcing, etc.)
  - Mill/Space qualified components will often be hard to get or too expensive (hermetic packaging and qualification)
  - FPGA's: Many HEP applications would like to use FPGA's in moderate radiation environments
    - Modern FPGA can work in modest radiation (TID: 10k 100krad)
    - Single event latchup has been seen to be OK in several modern FPGA families
    - Single events upsets is the major worry for reliable functioning
      - Antifuse: Normal SEU protection schemes (TMR, Hamming coding, etc.) can be used (can not be reprogrammed)
      - Flash: Normal SEU schemes can be used (do not reprogram when radiation is present)
      - SRAM: SEU is a major issue but tools improving on this exists. Partial reprogramming
    - Special space qualified FPGA's exist but are very expensive and have strict export restrictions

### Synergy

HEP electronics/detectors can/could have good synergy with several domains
Medical: Scanners, Xray
Material science: Synchrotron Xray detectors
Home security: Scanners, detectors
Space: rad tolerant electronics
[Military]

### Pixel detector spin off

- High resolution X-ray imaging with spectrum information
- Portable dosimeterIn Schools !







### Summary

- Ever increasing integration of detector and its electronics
  - Pixels, strips, calorimeter, muon, ,
- Use of modern IC, interconnect, opto and power conversion technologies vital to built significantly improved HEP experiments.
- Modern technologies are expensive to get access to and design with but offers unique opportunities and allows cheap large scale production.
- Our community must profit from available technologies the best possible:
  - Use common/shared technologies when possible
  - Exchange of experience across groups: TWEPP, FEE, NSS, MUX
  - We can "never" afford using the latest IC technologies
    - Only when using commercial IC's but they do "not like" our radiation environment
  - Buy IP blocks from industry when possible
- Assure sufficient electronics engineering expertise in HEP is vital.
  - Building complex electronics systems across so many groups requires efficient use of modern simulation and verification tools at all levels (system, sub-system, links, module, ASIC, analog front-end) and efficient communication and coordination.
  - Certain basic technologies/functions are needed by all HEP experiments/subdetectors and are better made as common efforts
    - IC technology qualification, libraries, IP's, Tools
    - Radiation hard optical links
    - Radiation hard and magnetic field tolerant Power conversion
    - Other ?

If you want to know more on electronics for HEP then come to TWEPP 2014



### **RD53** Organisation issues

#### 19 Institutes (2 new institutes have joined)

- Bari, Bergamo-Pavia, Bonn, CERN, CPPM, Fermilab, LBNL, LPNHE Paris, Milano, NIKHEF, New Mexico, Padova, Perugia, Pisa, Prague IP/FNSPE-CTU, PSI, RAL, Torino, UC Santa Cruz.
- ~100 collaborators
- 2 institutes requesting to join: LAL/OMEGA, Seville
- Spokes persons: Maurice Garcia-Sciveres, LBNL (ATLAS), Jorgen Christiansen, CERN (CMS)
  - 2 year terms
  - Institute Board
    - IB chair: Lino Demaria, Torino
    - Regular IB meetings
    - MOU drafted and ready to be signed
  - Management board: Spokes persons, IB chair, WG conveners
    - Monthly meetings
- Mailing lists, INDICO, CDS, TWIKI: <u>http://twiki.cern.ch/RD53</u>, etc. set up
- Technical Working Groups have started
  - WG conveners
  - Regular WG meetings
- First official RD53 collaboration meeting (pre-RD53 meeting in Nov. 2012)
  - CERN April 10-11, 64 participants: <u>https://indico.cern.ch/event/296570</u>

### **Radiation WG**

- Radiation test and qualification of baseline 65nm technology for radiation levels of 1Grad and 10<sup>16</sup> neu/cm<sup>2</sup>
- WG convener: Marlon Barbero, CPPM
- Activities and Status:
  - Defining radiation testing procedure
  - Test of 65nm transistors to 1Grad
    - NMOS: Acceptable degradation
    - PMOS: Severe radiation damage above 300Mrad (next slide)
      - Not yet a clear understanding of effects seen at these unprecedented radiation levels
      - ESD damage from manipulation and test systems ?
    - Systematic radiation/annealing studies required to be verified with pixel detector operation
  - Test of circuits to 1Grad
    - Ring oscillators, Pixel chips (CERN, LBNL)
    - Some digital circuits remains operational up to 1Grad, depending on digital library used. (better than indicated by tests of individual transistors)

#### Critical to confirm if 65nm is OK for inner layers of pixel detectors

Alternative foundries/technologies or replacement of inner layers after a few years ?

#### Plans

- Systematic radiation and annealing studies of 65nm basic devices and circuits
- Hadron/neutron radiation tests for NIEL effects
- Radiation test of basic transistors/structures in alternative technologies (for comparison/understanding)
- Simulation models of radiation degraded transistors (if possible)
- CERN, CPPM, Fermilab, LBNL, New mexico, Padova

#### **PMOS Radiation effects 65nm**



Transconductance



T=100°C

------

50

60

40

#### **PMOS Radiation effects 65nm**



### Radiation effects



# Analog WG

Krummenacher – TOT examples

- Evaluation, design and test of appropriate low power analog pixel Front-Ends
  - Convener: Valerio Re, Bergamo/Pavia
- Activities and status
  - Analog front-end specifications
    - Planar, 3D sensors, capacitance, threshold, charge resolution, noise, deadtime, ,
    - Alternative architectures –implementations to be compared, designed and tested by different groups
      - TOT, ADC, Synchronous, Asynchronous, Threshold adjust, Auto zeroing, etc.
  - Design / prototyping of FE's ongoing
  - Plans
    - Prototyping and test (with radiation) different FEs
      - Some FEs have already been prototyped
      - Others will be prototyped after the summer
  - Test, comparison and choice of most appropriate FE(s) Bergamo-Pavia, Bonn, CERN, CPPM, Fermilab, LBNL, Prague IP/FNSPE-CTU, Torino.



lkrum (nA)

# Top level WG

Global architecture and floor-plan issues for large mixed signal pixel chip Convener: Maurice Garcia-Sciveres, LBNL

Activities and status

- Global floorplan issues for pixel matrix
  - 50x50um<sup>2</sup> 25x100um<sup>2</sup> pixels with same pixel chip
    - ATLAS CMS has agreed to initially aim for this
  - Global floor-plan with analog and digital regions
- Appropriate design flow
- Column bus versus serial links
- Simplified matrix structure for initial pixel array test chips

#### Plans

- Submission of common simplified pixel matrix test chips
- Evaluation of different pixel chip (digital) architectures
  - Using simulation frameworks from simulation WG.
- Final integration of full pixel chip
- Bonn, LBNL, , , ,





Pixel chip with <512 x 512 pixels of 50um x 50um

# IP WG

- Make IP blocks required to build pixel chips
- Convener: Jorgen Christiansen, CERN
  - Activities and status
    - List of required IPs (30) defined and assigned to groups
      - Review of IP specs June 2014
    - Defining how to make IPs appropriate for integration into mixed signal design flow for full/final pixel chips
      - IP expert panel
      - CERN design flow
    - Design of IP blocks have started

#### Plans

- Common IP/design repository
- Prototyping/test of IP blocks 2014/2015
- IP blocks ready 2015/2016
- ~All RD53 institutes

| puntry                                   | DE  |     | FR  | NL  | 5    | 22  | IT - | INF |     | 8 8  | US | FR<br>H | UK  | US  | CZ<br>B a | Comments              |     |    |         |    |
|------------------------------------------|-----|-----|-----|-----|------|-----|------|-----|-----|------|----|---------|-----|-----|-----------|-----------------------|-----|----|---------|----|
|                                          | č   |     | 9 8 | IKH | 00   | 2 9 | N.   | whe |     | Tori | 8  | Ż       | α   | SS  | F         |                       |     |    |         |    |
| loop                                     |     |     |     | Z   |      |     | -    | 0   |     |      |    |         |     |     |           |                       |     |    |         |    |
| NALOG: Coordination with analog WG       |     |     |     |     |      |     |      |     |     |      |    |         |     |     |           |                       |     |    |         |    |
| emperature sensor.                       |     |     | 0   |     |      | (P) |      |     |     | (P)  |    |         |     |     | (P)       |                       |     |    |         |    |
| adiation sensor                          |     |     | (P) |     |      | (P) |      |     |     | 0?   |    |         |     |     | (P)       |                       |     |    |         |    |
| V leakage current sensor.                |     |     | 0   |     |      |     |      |     |     | (P)  |    |         |     |     | (P)       |                       |     |    |         |    |
| and gap reference                        |     | 0   | 0   | (P) |      | 0   |      |     |     |      |    |         | (P) |     |           | 3 Groups              |     |    |         |    |
| elf-biased Rail to Rail analog buffer    | (P) |     | (D) | (0) |      |     |      |     |     |      |    |         | 0   |     | (0)       |                       |     |    |         |    |
| IXED                                     | (F) |     | (1) | (1) |      |     |      |     |     |      |    |         | 0   |     | (1)       |                       |     |    |         |    |
| - 12 bit biasing DAC                     |     | (0) |     |     | 0    |     |      |     |     |      |    |         |     |     | (D)       |                       |     |    |         |    |
| ) - 12 bit slow ADC for monitoring       |     | 0   | 0   |     | 0    |     |      |     |     |      |    |         |     |     | (12)      | 3 Groups              |     |    |         |    |
| L for clock multiplication               | 0   | (P) | 1   | (P) | -    |     |      | (P) | (P) | (P)  |    |         | (P) | (P) |           | 5 Groups              |     |    |         |    |
| gh speed serialzer (~Gbit/s)             | 0   | (P) |     | (P) |      |     |      |     | (P) | .,   |    |         | (P) | (P) |           | Together              |     |    |         |    |
| /oltage controlled Oscillator)           |     |     |     | (P) |      |     |      | 0   | (P) | (P)  |    |         |     | 0.0 |           | Needed ?              |     |    |         |    |
| ock recovery and jiter filter            | 0   | (P) |     |     |      |     |      |     | (P) |      |    |         | (P) |     |           |                       |     |    |         |    |
| ogrammable delay                         | 0   | (P) |     |     |      |     |      |     | (P) |      |    |         | (P) |     |           |                       |     |    |         |    |
| IGITAL                                   | (0) | (0) |     |     |      |     |      |     |     |      |    |         |     | 103 |           |                       |     |    |         |    |
| AM/ETEO fee EOC                          | (P) | (P) |     |     |      |     | (D)  |     | (0) |      |    |         |     | (P) |           |                       |     |    |         |    |
| PROM/FELISE                              | (P) | 0   | (P) |     |      |     | (P)  |     | (P) |      |    |         |     | 0   |           |                       |     |    |         |    |
| ICE storage cell / config reg            | (P) | ~   | ö   |     |      |     | (P)  |     | (P) |      |    |         |     | (P) |           | Or TMR ?              |     |    |         |    |
| Clock driver/receiver                    | (P) |     | 1   |     |      | 0   |      |     |     |      |    |         | (P) |     |           | and the second second |     |    |         |    |
| Dedicated rad hard digital library)      | (P) | (P) | (P) |     |      |     |      |     | 0   |      |    | (P)     | (P) |     |           | If needed             |     |    |         |    |
| compact mini digital library for pixels) | (P) | (0) | (P) |     |      |     |      |     | 0   |      |    | (D)     | (D) |     |           | Ifneeded              |     |    |         |    |
| Coordination with LO WG                  | (1) | (1) | (1) |     |      |     |      |     | 0   |      |    | (10)    | (0) |     |           | Tracedeu              |     |    |         |    |
| asic IO cells for radiation              | (P) | 0   |     |     |      |     |      |     |     |      |    |         |     |     |           |                       |     |    |         |    |
| and SLVS draver (<100MHz)                |     |     |     |     |      |     |      |     |     |      |    |         |     |     |           |                       |     |    |         |    |
| w speed stars diver (<100-m2)            | (P) | (P) |     |     |      | 0   |      |     | (P) | (P)  |    |         |     |     | (P)       |                       |     |    |         |    |
| igh speed SLVS driver (~1Gbits/s)        | (P) | (P) |     |     |      | 0   |      |     | (P) | (P)  |    |         |     |     | (P)       | Together              |     |    |         |    |
| .VS receiver                             | (P) | (P) |     |     |      | 0   |      |     | (P) |      |    |         |     |     | (P)       |                       |     |    |         |    |
| 3bits/s drv/rec cable equalizer          | (.) |     |     |     |      |     |      |     |     |      |    |         |     |     | ~         | New                   |     |    |         |    |
| 4 and wire bond pads                     | (P) | 0   |     |     |      |     |      |     |     |      |    |         |     |     |           |                       |     |    |         |    |
| O pad for TSV)                           | 0   |     | (P) |     |      |     |      |     |     |      |    | (P)     |     | (P) |           |                       |     |    |         |    |
| nalog Rail to Rail output buffer         | 0   |     | (P) |     |      |     |      |     |     |      |    | (P)     |     | (P) |           |                       |     |    |         |    |
| nalog input pad                          | 0   |     |     |     |      |     |      |     |     |      |    | (P)     |     |     |           |                       |     |    |         |    |
| OWER                                     |     |     |     |     |      |     |      |     |     |      |    |         |     |     |           |                       |     |    |         |    |
| 00(s)                                    |     | (P) | (P) | 0   |      |     |      |     | (P) | (P)  |    |         | (P) |     |           |                       |     |    |         |    |
| witched capacitor DC/DC                  |     | (P) |     |     |      |     |      |     |     |      | 0  |         |     |     | (P)       |                       |     |    |         |    |
| nunt regulator for serial powering       |     |     |     | 0   |      |     |      |     |     |      | 1  |         |     |     |           |                       |     |    |         |    |
| ower-on reset                            |     |     |     |     |      |     |      |     |     |      |    |         |     |     |           | New                   |     |    |         |    |
| ower pads with appropriate ESD           | (P) | 0   |     |     |      |     |      |     |     |      |    |         |     |     |           |                       |     |    |         |    |
| OFT IP: Coordination with IO WG          |     |     |     |     |      |     |      |     |     |      |    |         |     |     |           |                       |     |    |         |    |
| ontrol and command interface             |     | (P) |     |     | (P)  |     |      |     | 0   |      |    | (P)     |     |     |           |                       |     |    |         |    |
| eadout interface (E-InK ?)               |     | (P) |     |     | (P)  |     |      |     | 0   |      |    | (P)     |     |     |           |                       |     |    |         |    |
| arrienter y                              |     |     |     |     |      |     |      |     |     |      |    |         |     |     |           |                       |     |    |         |    |
| I LAS/CM5/Neutral                        | A   | Ν   | Α   | Α   | С    | C   | С    | С   | C   | С    | Α  | Α       | N   | Α   | А         | ATLAS                 | CMS |    | Neutral |    |
| s                                        |     | 7 1 | 6 5 | 2   |      | 2 ! | 5    | 1   | 1 . | 4 1  | 1  |         |     | 1 1 | L.,       | 16                    |     | 14 | 7       | 1  |
| ?)'s                                     | 1.  | 4 1 | 5 8 | 5   | 8. 8 | 2 : | 2    | 2   | 1 1 | 0 7  |    | 7       |     | 9 6 | 9         | 49                    |     | 24 | 25      | 21 |

# Simulation/verification WG

- Simulation and verification framework for complex pixel chips
- Convener: Tomasz Hemperek, Bonn
  - Activities and status
    - Simulation framework based on system Verilog and UVM **-**10 (industry standard for ASIC design and verification)
      - High abstraction level down to detailed gate/transistor level
      - Benchmarked using FEI4 design
      - First basic version of framework available on common repository
        - Internal generation of appropriate hit patterns
        - Used for initial study of buffering architectures in pixel array
    - Integration with ROOT to import hits from detector simulations and for monitoring and analysing results.

#### Plans

- Refine/finalize framework with detailed reference model of pixel chip
- Import pixel hit patterns from detector Monte-Carlo simulation
- Modelling of different pixel chip architectures and optimization
- Verification of final pixel chip
- Bonn, CERN, Perugia



Buffer occupancy comparison between simulation and analytical statistical model



### RD53 Outlook

#### 2014:

- Release of CERN 65nm design kit. RD53 eagerly awaiting NDA issues to be resolved.
- Detailed understanding of radiation effects in 65nm
  - Radiation test of few alternative technologies.
  - Spice models of transistors after radiation/annealing
- IP/FE block responsibilities defined and appearance of first FE and IP designs/prototypes
- Simulation framework with realistic hit generation and auto-verification.
- Alternative architectures defined and efforts to simulate and compare these defined
- **Common MPW submission 1**: First versions of IP blocks and analog FEs

2015:

- Common MPW submission 2: Near final versions of IP blocks and FEs.
- Final versions of IP blocks and FEs: Tested prototypes, documentation, simulation, etc.
- IO interface of pixel chip defined in detail
- Global architecture defined and extensively simulated
- Common MPW submission 3: Final IPs and FEs, Initial pixel array(s)

2016:

- **Common engineering run: Full sized pixel array chip.**
- Pixel chip tests, radiation tests, beam tests , ,
- 2017:
  - Separate or common ATLAS CMS final pixel chip submissions.

### **RD53 Summary**

#### RD53 has gotten a good start

- Organization structure put in place
- Technical work in WGs have started

The development of such challenging pixel chips across a large community requires a significant organisation effort.

#### Radiation tolerance of 65nm remains critical

- Design work has started in 65nm (FEs, IPs)
- Annealing effects/scenario to be understood
- Backup: Inner layer replacement versus alternative technology
- RD53 is now a recognized collaboration requested to report in relevant HEP/pixel meetings, conferences and workshops:
  - ATLAS/CMS meetings
  - ACES2014: <u>https://aces.web.cern.ch/aces/aces2014/ACES2014.htm</u>
  - Front-end electronics workshop: <u>http://indico.cern.ch/event/276611/overview</u>
  - Pixel/Vertex
- Funding for RD53 work starts to materialize in institutes
  - CMS and ATLAS rely fully on RD53 for their pixel upgrades

### Why 65nm Technology

- Mature technology:
  - Available since ~2007
- High density and low power
- Long term availability
  - Strong technology node used extensively for industrial/automotive
- Access
  - CERN frame-contract with TSMC and IMEC
    - Design tool set
    - Shared MPW runs
    - Libraries
    - Design exchange within HEP community
- Affordable (MPW from foundry and Europractice, ~1M NRE for full final chips)
- Significantly increased density, speed, , , and complexity !



#### Introducing 14XM (eXtreme Mobility)





X. Llopart CERN

# CMS Phase 2 pixel challenges

- Very high particle rates: ~500MHz/cm<sup>2</sup> (inner layer)
  - Hit rates:  $\sim 2 \text{ GHz/cm}^2$  (factor  $\sim 16$  higher than current detectors)
  - Assuming max 140 (200) pileup and 25ns crossings
  - Smaller pixels:  $\sim \frac{1}{4}$  ( $\sim 50x50um^2$  or  $25x100um^2$ )
    - Increased resolution
    - Improved two track separation (jets)
    - Outer layers with larger pixels, using same pixel chip
      - Lower power low material, lower cost
- Participation in first/second level trigger ? (NO)
- Increased readout rates: 100kHz -> 500KHz 1MHz
  - Data rate: 10x trigger X >10x hit rate = >100x !
  - Unprecedented hostile radiation: ~1Grad, ~10<sup>16</sup> Neu/cm<sup>2</sup>
    - Hybrid pixel detector with separate readout chip and sensor.
       Monolithic seems unfeasible for this very high rate hostile radiation environment
    - Phase2 pixel will get in 1 year what we now get in 10 years
- Low mass -> Low power, Critical and very challenging
- Pixel sensor(s) not yet determined
  - Planar, 3D, (Diamond, HV CMOS)
  - Possibility of using different sensors in different layers/locations
  - Do we need/want charge information ? (assume yes for track interpolation)
  - Final sensor decision may come relatively late.
- Complex, high rate and radiation hard pixel chip required and critical -> RD53







### Layout

Based on phase 1 layout with additional forward disks (2 x 10)

Detailed detector/physics simulation for phase 2 detector not yet available

#### First iterations on-going:

- Fit layout constraints
- Estimate vertex/impact-parameter resolution
- Minimize number of different module types
- Minimize overlap
- Replace inner part if needed
- Cooling
- Size of pixel modules: 4x1, 4x2, (2x2)
- Size of pixel chip: e.g. 23 x 21+2 mm<sup>2</sup>
- Electronics services







G. Sguazzoni

| #Layer | R   | ΔR | #faces | Active length in XY | Overlap | Module Size            |
|--------|-----|----|--------|---------------------|---------|------------------------|
| 1      | 31  | 3  | 10     | 21 (=1 chip)        | 0.85    | 4x1                    |
| 2      | 63  | 3  | 20     | 21 (=1 chip)        | 1.05    | 4x1                    |
| 3      | 103 | 3  | 16     | 42 (=2 chips)       | 1.01    | 4x2                    |
| 4      | 156 | 3  | 24     | 42 (=2 chips)       | 0.92    | 4x2                    |
|        |     |    |        |                     | ſ       | )<br>imensions in Imml |



# 3<sup>rd</sup> generation pixel architecture



- 95% digital (as FEI4)
- Charge digitization (TOT or ADC)
- ~200k pixel channels per chip

- Pixel regions with buffering
- Data compression in End Of Column
- Chip size: ~20 x 20 mm<sup>2</sup>

# Buffering requirements

#### Data buffering

A.

#### During trigger latency

- Location: Pixel region
- Size: Hit rate, Trigger latency, PR organization/sharing,
- Data per hit ( TOT/ADC, BX-ID, etc.)
- Different buffer schemes possible

#### Data out of PR to EOC

- Location: PR region
- Small FIFO
- Assemble and compress all hits
  - FIFO buffer per pixel column to align event fragments
  - Buffers for compression/extraction ?.
  - Output FIFO

#### Acceptable losses:

- Hit loss at worst case locations (L1)
  - Whish: <0.1%
    - Acceptable: <1%, in worst case locations.
- Event loss: Never, as implies system de-sync.



### Hit buffer in pixel regions

#### Hit losses (2GHz/cm<sup>2</sup>) 4x4:

- 16 hit buffer
  - Loss 10us: 10<sup>-7</sup>
  - Loss 20us: 10<sup>-3</sup>
- **8** hit buffer
  - Loss 10us: 10<sup>-2</sup>
  - Loss 20us: 10<sup>-1</sup>

Current estimates indicates that 16 hit buffer is feasible in 65nm

 Uncertainty on radiation tolerance and implications on physical size of memory elements !







#### 

1.E-06





### Readout

#### High speed electrical links: 1.2Gbits/s

#### Limited speed:

- Radiation damage on pixel chip
- Distance: ~2m.
- Very light cable
- Modularity and flexibility:
  - Multiple links per chip for very high rate regions
  - Merging data from multiple chips (2-4) for low rate regions
- Appropriate interface at input of LPGBT

#### ~5K low mass E-links for 500KHz trigger rate



Data from 1-4 neighbour ROCs

#### Pixel modules





|           | PSI   | HABIA | TWINAX |
|-----------|-------|-------|--------|
| Cu        | 0.027 | 0.339 | 0.083  |
| Alu       | 0.058 | 0.330 | 1.390  |
| Insulator | 0.011 | 0.194 | 1.994  |
| Total     | 0.096 | 0.863 | 3.467  |

0.085+/ -0.005in

Twinax

# Getting data into DAQ



# Data and Link types

- Readout DAQ:
  - Unidirectional
  - Event frames.
  - High rate
  - Point to point
- Trigger data:
  - Unidirectional
  - High constant data rate
  - Short and constant latency
  - Point to point

- Detector Control System
  - Bidirectional
  - Low/moderate rate ("slow control")
  - Bus/network or point to point
- Timing: Clock, triggers, resets
  - Precise timing (low jitter and constant latency)
  - Low latency
  - Fan-out network (with partitioning)
- We often keep these data types physically separate and each link type has its own specific implementation
- Multiple exceptions
  - Merge timing and control/monitoring: CMS CCU, LHCb SPECS, ,
  - Combine readout and control: ALICE DDL (Used for DCS ?),
  - Use same link implementation for readout and trigger data
    - But never have readout and trigger data on same physical link
  - Down: Control data with Timing. UP: Monitoring data with Readout: ATLAS pixel/SCT, ,

### Example: CMS tracker links



| INL         | 1%        |
|-------------|-----------|
| SpNR        | 48 dB     |
| BWtyp       | 70 MHz    |
| Gain        | 0.8 V/V   |
| ~40000 Fib  | res       |
| Control S   | ystem     |
| Data-Rate   | 80Mb/s    |
| BER         | 10-12     |
| ~2500 Fibre | es        |
| Length: 40- | 65m       |
| Low Mass &  | & Volume  |
| Non-Magne   | etic      |
| Radiation R | Resistant |

### How can this look



# DAQ interface



### GBT, Versatile, GLIB

