Challenges for Silicon Pixel Sensors at the XFEL

R.Klanner

(Inst. Experimental Physics, Hamburg University) work by

J.Becker, E.Fretwurst, I.Pintilie, T.Pöhlsen, J.Schwandt, J.Zhang

Table of Content

- 1. Introduction: The XFEL Challenges
- 2. Plasma Effect
- 3. Radiation Damage
- 4. Charge Losses + Surface Effects
- 5. AGIPD Sensor Optimization
- 6. Summary

supported by

1. The XFEL Challenges for Pixel Sensors

- European X-FEL under construction in Hamburg → completion end 2015
- Pulse trains of e.g. 12 keV photons of 220 ns spacing and <100 fs duration

- → Pixel sensors for imaging:
- 0, 1 ... > 10^5 12 keV photons per 200 x 200 μ m² pixel and ~30 000 pulses/sec
- → Radiation damage
- → Plasma effect/charge explosion
- → Charge losses
- → Pile-up from preceding pulse

Unique XFEL features:

Intensity \times pulse duration \times coherence \times \mathring{A} resolution

1. The XFEL Challenges for Pixel Sensors: AGIPD

AGIPD = Adaptive Gain Integrating Pixel Detector (Bonn-DESY-Hamburg-PSI)

- Hybrid ptn pixel detector
- 1 Mpixels of 200 \times 200 μm^2
- 500 µm thick Si

$$- E_v = 3 - 20 \text{ keV}$$

- Dynamic range: 1 to >10 4 (12 keV y's)
- Adaptive gain switching to 3 ranges
- ~ 350 stored images/pulse train
- Trigger + Fast Clear

2. Plasma Effect and Charge "Explosion"

Plasma effect*):

 $10^5 \ 12.4 \ \text{keV} \ \text{y's in} \ (200 \ \mu\text{m})^2$

- \rightarrow ~ 5×10^{13} e-h pairs/cm³ \rightarrow n⁺ doping of $O(10^{12}$ cm⁻³)
- → After ~ps a neutral e-h plasma forms, which erodes by ambipolar diffusion
- → Once charges are separated, charge repulsion spreads charge clouds
- → Delayed charge collection
- Spread of collected charge (with a strong dependence on E-field)

Experiment strip-sensor: multi-TCT with sub-ns laser with different λ_{abs} + detailed simulations (WIAS-Berlin)

Current transients for 450 μm p⁺n sensor – V_{dep} = 140 V for ~ 3×10^5 1 keV photons focused to \varnothing ~10 μm

Charge collected on strip sensor with 80 µm pitch

^{*)} e-h annihilation here negligible at XFEL, not the case for ions!

J. Becker et al., NIMA 615(2009)230,

J.Becker et al., NIMA 624(2009)716

2. Plasma Effect and Charge "Explosion"

Comparison simulation (Gärtner - WIAS) with measurements (J. Becker):

Universität Hamburg

2. Plasma Effect and Charge "Explosion"

Normalized point-spread functions for 12 keV y's focused to \varnothing ~10 μm

J.Becker

High bias voltage (>500 V) desirable to reduce influence of plasma effect 🔨

[not shown: same conclusion if a charge collection time < 60 ns is required]

3. Radiation Damage

XFEL requirements: 1 GGy (SiO₂) for 3 years operation (non-uniform!) Few data on X-ray damage for high-ohmic structures for such high doses \rightarrow Work at UHH:

- Irradiate test structures from different vendors to extract "microscopic" and "macroscopic" parameters due to X-ray radiation damage
- "Understand" impact of above parameters on sensor performance, via measurements on irradiated sensors and detailed TCAD simulations
- Optimize sensor design using TCAD simulations
- Order "optimized" sensors (Aug. 2012) and verify performance (early 2013)

Effects of X-ray radiation damage for p⁺n sensors:

- No bulk damage for E_v < 300 keV
 - \rightarrow "Surface" damage: Build-up of oxide charges and Si-SiO₂ interface traps
 - → Accumulation layers form (or increase)
 - → High field regions appear reducing the breakdown voltage
 - → Leakage currents increase due to interface states
 - → Depletion voltage and inter-pixel capacitance increase
 - \rightarrow Charge losses close to the Si-SiO₂ interface occur (increase)

3. X-ray Induced Defects in Si Sensors

for 500 nm SiO_2 : $4 \cdot 10^{16}$ eh/cm² for dose of 1 MGy (compared to 10^{15} cm⁻² surface states)

No. eh-pairs depends on ionization density and E-field

Fig. 10. Fractional yield of holes generated in SiO₂ as a function of electric field in the material [14], [15].

3. X-ray Induced Defects in Si Sensors

3. Damage of SiO₂ and at Si-SiO₂ Interface

\bigcirc Oxide trapped charges (N_{ox}) :

- Mainly **positive** oxygen-vacancy defects (one shallow trap → hole transport,

+ one deep trap E'_{γ} @~3 eV)

saturation: h-trapping = eh-recombination

+ Border oxide traps ("add" to N_{ox}):

Positive E', defect can exchange
charge with Si depending on Fermilevel on time scales 0.01 s to seconds

 \bigotimes Interface traps (D_{it}^*) :

Traps at interface (no barrier!) dangling bond defects (P_b) - H^+ released when h captured:

 $SiH + H^+ \rightarrow (Interface Trap)^+ + H_2$

No. limited by no. of dangling bonds

Mobile ions: not an issue anymore

Positive charged E_V' center P_b center at <111> interface P_{b0} center at <100> interface

* from D. M. Fleetwood's book "Defects in Microelectronic Materials and Devices"

^{*)} Distribution of traps in the Si bandgap: D_{it} [1/(eV·cm²)]

3. Characterization of Microscopic Defects: Dit

Test structures (diff. vendors + crystal orientations, oxide thickness, + ...)

MOS Capacitor "MOS-C"

TDRC: Properties of interface traps (Thermal Dielectric Relaxation Current)

- Bias MOS-C in e-accumulation

 → fill interface traps with electrons
- Cool to 10 K \rightarrow freeze e in traps
- Bias to inversion and heat up to 290 K
- ⇒ I_{TDRC} due to release of trapped e's ⇒ $I_{TDRC}(T)$ ⇒ $D_{it}(E)$ *)

Parameterize by 3 states - not unambiguous!

^{*)} Temperature T \rightarrow E_c - E_{it} (T dependence of Fermi level)

3. Characterization of Microscopic Defects: Nox

C/G-V curves for CMOS-C:

- D_{it}(E) allows calculation of C/G-V curves as function of frequency (assuming values for trap cross sections)

- Oxide charge density N_{ox} just shifts

curves along the V-axis $\rightarrow N_{ox}$

Fair description of a large amount of data

For details and (some of) the experimental complications, see: J.Zhang et al., JSR19/3(2012)340,

3. Characterization of Macroscopic Effects: J_{surf}

Surface current density from GCD:

- Measure I-V curve
- J_{surf} dominated by mid-gap traps

E-field at Si-SiO₂ interface:

shielded

non zero

shielded

3. Summary: Dose Dependence of N_{ox} and J_{surf}

Vendors: CiS, Hamamatsu, Canberra; Crystal orientations: <111>,<100>; Insulator: SiO₂ (335-700 nm), with and without additional 50 nm Si₃N₄

- Results reproducible (after some annealing)
- Spread of about a factor 2
- N_{ox} saturates for ~1 10 MGy
- J_{surf} peaks at 1-10 MGy, then decreases

- J.Zhang et al., arXiv:1210.0427(2012)
- Equilibrium h-trapping and eh-recombination?
- E-field effects due to oxide charges?
 - → Understanding needs more studies

X-ray radiation damage saturates !!!

3. E-Field Dependence of N_{ox} and J_{surf}

Irradiation MOS-C and GCD with bias applied

- CiS <100> with \sim 350 nm SiO₂ + 50 nm Si₃N₄

 V_{bias} > 0: Increase of N_{ox} and I_{surf}

 $V_{\text{bias}} \leq 0$: Only weak dependence

For p⁺n sensor: E_{ox} < 0 \rightarrow no problem

J.Zhang

E-field in oxide is not a problem for N_{ox} and J_{surf}

3. Annealing of N_{ox}

MOS-C and GCD irradiated to 5 MGy and annealed at 60 and 80°C

- CiS <111> with ~350 nm SiO₂ + 50 nm Si₃N₄

J.Zhang et al., arXiv:1210.0427(2012)

- Described by "tunnel anneal model" [T.R. Oldham et al., 1988]

$$N_{ox}(t) = N_{ox}^0 \cdot (1 + t/t_0)^{-\frac{\lambda}{2\beta}}$$
 with $t_0(T) = t_0^* \cdot \exp\left(\frac{\Delta E}{k_B T}\right)$

 $1/\lambda$... width of hole trap distr. in SiO_2 $t_0(T)$... tunneling time constant β ... related to tunnel-barrier height ΔE ... E_{trap} - E_{Fermi}

3. Annealing of N_{ox}

"Tunnel anneal" model: How to obtain a non-exponential t-dependence?

T.R.Oldham et al., IEEE Trans.NS-33/6(1986)1203 - (with some modification by J.Zhang/R.Klanner)

N _{ox} ⁰ [cm ⁻²]	λ/2β	t ₀ * [s]	ΔE [eV]
3.6 x 10 ¹²	0.070	5.4 x 10 ⁻¹²	0.91

T [°C]	80	60	20
t ₀ [s]	48	290	21710

J.Zhang

$$\Delta E = E_{ht}(SiO_2) - E_{Fermi}(Si) = 0.91 \text{ eV}$$
 \longrightarrow $E_{ht}(SiO_2) \sim 6 \text{ eV}$ - compatible with existing data

 \rightarrow Slow N_{ox} annealing: At 20°C <50% annealing in 3 years (assuming model is correct!)

3. Annealing of N_{it} - Microscopic View

GCD irradiated to 5 MGy and annealed 80°C

- CiS <111> with ~350 nm SiO_2 + 50 nm Si_3N_4

J.Zhang et al., arXiv:1210.0427(2012)

3. Annealing of J_{surf}

MOS-C and GCD irradiated to 5 MGy and annealed at 60 and 80°C

- CiS <111> with ~350 nm SiO_2 + 50 nm Si_3N_4

J.Zhang et al., arXiv:1210.0427(2012)

- Described by "two reaction model" [M.L. Reed 1987]

$$I_{surface}(t) = I_{surface}^{0} \cdot (1 + t/t_1)^{-\eta}$$
 with $t_1(T) = t_1^* \cdot \exp\left(\frac{E_{\alpha}}{k_B T}\right)$

 $\begin{array}{l} \eta = k_1/2k_2 \\ \text{Dangl. bonds:} \quad \frac{d}{dt}[\text{Si}\cdot] = -k_1[\text{Si}\cdot][\text{H}] \\ \text{H}_2 \text{ formation:} \quad \frac{d}{dt}[\text{H}] = -2k_2[\text{H}][\text{H}] \\ \text{t}_1(\text{T}) \dots \text{ characteristic time constant} \\ \text{E}_a \dots \text{ activation energy} \end{array}$

 \rightarrow Fast annealing: At 20°C ~50% annealing in 5 days (assuming model is correct!)

Message: N_{ox} and J_{surf} anneal with time

3. Impact of Radiation Damage on Sensors

Sensors irradiated:

- AC coupled from CIS (80 µm pitch)
- DC coupled from Hamamatsu (50 µm pitch)

p + on n Si strip sensor:

- <100> n-substrate
- High resistivity: 2 5 kΩ·cm
- Thickness: 285 \pm 10 μ m
- Active area: 0.62 cm²
- "Oxide": 300 nm SiO₂+50 nm Si₃N₄
- Strip length: 7.8 mm
- Strip pitch: 80 μm
- Strip number: 98

X-ray irradiation environments:

- @DESY DORIS III beamline F4
- Typical energy is 12 keV
- Dose rate in SiO₂: 200 kGy/s
- Doses: 1 MGy
- · Irradiated sensors:

sensor 1: irradiated without bias sensor 2: irradiated with 35 V bias

3. Impact of Radiation Damage on Sensors: I_{dark}

AC-coupled CIS sensor:

Interface current (D_{it}) dominates

- Current from depleted interface (E-field)
- Interface area changes with V_{bias}
 - → seen by X-ray users
 - → minimize depleted interface area (→ minimize gap between implants/Al)

Important for sensor optimization

3. Impact of Radiation Damage on Sensors: V_{depl}

AC-coupled CIS sensor:

For pad sensor $C = \frac{\varepsilon \cdot \varepsilon_0 \cdot A}{w_{depletion}} \rightarrow \frac{1}{C^2} \sim V$ up to depletion, then C = constant

Effects of $N_{ox} \rightarrow$ increase of electrons in accumulation layer

- Step in $1/C^2$ when undepleted regions below SiO_2 separate
- Voltage required to deplete entire sensor depends on Nox

No significant impact - however, good to know

3. Impact of Radiation Damage on Sensors: V_{bd}

Simulations 2-dim [x,z and r,z] and 3-dim

 $N_{ox} \rightarrow$ accumulation layer \rightarrow changes curvature p⁺-depletion \rightarrow changes E-field

Breakdown (V_{bd}) depends on N_{ox} , t_{ox} , p^+ -implant, Al-overhang, potential on top of sensor (passivation layer), technology, etc.

J.Schwandt

Major challenge to reach $V_{bd} > 500 \text{ V}$ after irradition Λ

4. Charge Losses close to Si-SiO₂ Interface

Worry: Do charges trapped at interface cause pile-up?

Positive Charges (Nox, Dit)

→ e-accumulation + potential minimum
 → Charges stored ("lost")

p⁺n strip sensor: 50 μ m pitch, N_{eff} =10¹²cm⁻²

→ Significant charge losses observed

4. Charge Losses close to Si-SiO2 interface

- Losses limited to few µm below SiO2
- Charges spread in ps over acc. layer
- Time to reach equilibrium after losses 10-100 µs » 220 ns

Charge losses no problem

Side remark:

TCT with focused light and few µm penetration:

- An excellent tool to study the dependence of accum.layers on radiation damage and the (time/ humidity dependent) boundary conditions on the sensor surface
- It is observed that charge losses depend on time, with constants strongly correlated with humidity (→ surface conductivity ???)
- Time constants differ by factor 120

Hole losses vs. time after changing bias voltage from 500 V to 200 V; p $^{+}$ n strip sensor, 50 μ m pitch, 0 Gy. 600 nm laser, 100k eh-pairs injected

T.Pöhlsen et al., arXiv:1207.6538(2012), (subm. to NIM-A)

4'. Surface Conductivity and Steady-State

Another way to measure the time dependence of surface potentials:

Time constant changes by factor ~50 between ~30% and ~45% RH

216

time after opening switch [s]

▲ A RH = 30%

512 1000

0 −40 −30 Voltage [V] **V**₆₁

time after opening switch [s]

4. Charge Losses and Surface Boundary Conditions

Do we care what happens on the surface (passivation) of the sensor?

5. AGIPD Sensor: Specifications

Sensor specifications (based on science and feasibility)

	Parameter	Value	Comments
Γ	mechanical thickness	500±20 μm	mounting tolerances, X-ray conv. efficiency
	flatness (sensors after cutting)	< 20 μm	bump bonding,:value to be discussed (v. t. b. d.)
	distance pixel edges to cut edges	I200 μm	dead space for science
	n doping	3-8 kΩ·cm	depletion voltage, sideway depletion at edges
	dead layer n+-side	< 0.5 μm Al , < I μm n+ Si	minimize, but no compromise on breakdown
	doping non-uniformity	< 10%	distortions in charge collection
	pixel dimensions	200 μm x 200 μm	see sensors design
	nominal operating voltage	500 V	
	breakdown voltage	> 900 V	Sensor should operate stably at > 900 V, high voltage options for high photon density: mounting, pulse shape, dead space at edges
	coupling type	DC	
	inter-pixel capacitance@500V	500 fF	noise, cross-talk
	total dark current sensor@500V	50 μA	power
	max. dark current/pixel@500V	50 nA	noise, operation of read-out ASIC
	max. dark current CCR@500V	20 μΑ	

5. AGIPD Sensor: Optimization

Optimization using TCAD with radiation damage parameters

Performance parameters optimized

- Breakdown voltage
- Dark current
- Inter-pixel capacitance
- Dead space

I. Pixel:

- Gap
- Al overhang
- Radius of implant and AI at corners

2. Guard-ring structure + sensor edge

- Number of rings
- Implantation width
- Spacing
- Al overhangs
- Radii
- Scribe line

3. Process parameter:

- Junction depth
- Oxide thickness
- Overall passivation

J.Schwandt et al., arXiv:1210.0430(2012)

5. AGIPD Sensor: Optimization Strategy

- Performance to be optimized:
 - Pixel: I. Breakdown
 - 2. Surface current
 - 3. Inter-pixel capacitance
 - Guard-rings: I.V_{bias} (1000 V?) over I.2 mm for doses between 0 and I GGy (nonuniform)
 - 2. Bulk not depleted at scribe line (no leakage current from the edge)
- Strategy of guard-ring (GR) optimization (2D simulations in (x,y) and (r,z) coordinates):
 - O GR: Study breakdown behavior of 0 GR (CCR only) for different oxide charges as function of oxide thickness and Al overhang
 - Estimate number of floating GRs for 1000 V
 - Vary spacing between rings, implant width and overhang to achieve maximum V_{bd} \approx equal electric field
 - Minimize space required
- Strategy of pixel optimization (2D "strip sensor" calculation used):
 - Optimize oxide thickness, Al overhang, gap and implantation depth with respect to breakdown voltage, dark current and capacitance
 - Extrapolation of dark current and capacitances to "3D values"
 - Check breakdown voltage + dark current with 3D simulation (only 1/4 pixel used due to grid size)

 J.Schwandt et al., arXiv:1210.0430(2012)

Discuss only guard ring optimization due to lack of time

5. Guard Ring Optimization: 0 GR V_{bd} vs. d_{ox} and d_{p+}

2-D (x,y) simulations (for 0 guard ring - GR):

Strong dose dependence:

 $(V_{bd} \sim 400V \text{ for } N_{ox} < 10^{11} \text{cm}^{-2})$

Sudden decrease in V_{bd}:

- Si below Al overhang gets depleted \rightarrow voltage drop over larger region \rightarrow E smaller for a given (high) N_{ox} : V_{bd} increases with \downarrow d_{oxide} and \uparrow p⁺-implant depth

For high radiation damage optimization is very different than for unirradiated sensor – V_{bd} ~ 70 V (0 GR) can be reached

5. Guard Ring Optimization: 15 Guard Rings vs. V_{bd}

Optimize GR layout

1 gap (0 GR) \rightarrow V_{bd} ~70 V \rightarrow for V_{bd} ~ 1000 V need 16 gaps (15 GR)

Optimize spacing, width implant, Al overhang for equal max. E-field and minimal space

+ Assure that depletion region does not touch cut edge (critical for low N_{ox} !)

Result:

- Gap pixel to CCR: 20 µm
- Width implantation window CCR: 90 µm
- Al overhang CCR: 5 µm
- Gap CCR to 1st guard ring (GR): 12 µm
- -Width of implantation window GR 25 µm
- \bullet Al overhang left (towards pixel) of GR 1, 2, ... 15: 2, 3, ... 16 μm
- Al overhang right (away from pixel) of GR I 15:5 μm
- Gap between GR 1-2, 2-3, ... 14-15: 12, 13.5, ... 33 μm
- Distance pixel to cut edge: 1.2 mm

GDS printout: J.Schwandt and J.Zhang J.Schwandt et al., arXiv:1210.0430(2012)

6. Summary

Challenges for pixel sensors at E-XFEL have been studied at UHH:

- Plasma effect
- Charge losses close to Si-SiO2 interface surface effects
- Pile-up
- Radiation damage

Sensor optimized using TCAD with radiation damage implemented

- Design optimization depends on dose
- 15 guard rings needed for V_{bd} O(1000 V)
- Layout + technological parameters found which meet specifications

Sensor ordered → delivery early 2013

Comment: Compared to bulk damage little efforts in the detector community on the study of X-ray damage for sensors (and there have been surprises in the past!)

Many thanks to UNI-Hamburg- + AGIPD-colleagues + sponsors

The End

