Challenges for Silicon Pixel Sensors at the XFEL

R. Klanner
(Inst. Experimental Physics, Hamburg University)
work by
J. Becker, E. Fretwurst, I. Pintilie, T. Pöhlsen, J. Schwandt, J. Zhang

Table of Content
1. Introduction: The XFEL Challenges
2. Plasma Effect
3. Radiation Damage
4. Charge Losses + Surface Effects
5. AGIPD Sensor Optimization
6. Summary

supported by and done in collaboration with
1. The XFEL Challenges for Pixel Sensors

- European X-FEL under construction in Hamburg → completion end 2015
- Pulse trains of e.g. 12 keV photons of 220 ns spacing and <100 fs duration

→ Pixel sensors for imaging:
- 0, 1 … >10⁵ 12 keV photons per 200 x 200 μm² pixel and ~30 000 pulses/sec

→ Radiation damage
→ Plasma effect/charge explosion
→ Charge losses
→ Pile-up from preceding pulse

Comparison of peak brilliances of X-ray sources

Unique XFEL features:
Intensity × pulse duration × coherence × Å resolution
1. The XFEL Challenges for Pixel Sensors: AGIPD

AGIPD = Adaptive Gain Integrating Pixel Detector (Bonn-DESY-Hamburg-PSI)

- Hybrid p+n pixel detector
- 1 Mpixels of 200 x 200 μm²
- 500 μm thick Si

- $E_{\gamma} = 3 - 20$ keV
- Dynamic range: 1 to $>10^4$ (12 keV γ's)
- Adaptive gain switching to 3 ranges
- ~ 350 stored images/pulse train
- Trigger + Fast Clear
Plasma effect*):

10^5 12.4 keV γ's in $(200 \, \mu m)^2$

$\rightarrow \sim 5 \times 10^{13}$ e-h pairs/cm3

\rightarrow n$^+$ doping of $O(10^{12} \, \text{cm}^{-3})$

\rightarrow After \simps a neutral e-h plasma forms, which erodes by ambipolar diffusion

\rightarrow Once charges are separated, charge repulsion spreads charge clouds

\rightarrow Delayed charge collection

\rightarrow Spread of collected charge (with a strong dependence on E-field)

Experiment strip-sensor: multi-TCT with sub-ns laser with different λ_{abs} + detailed simulations (WIAS-Berlin)

*) e-h annihilation here negligible at XFEL, not the case for ions!

J. Becker et al., NIMA 615(2009)230,
J. Becker et al., NIMA 624(2009)716

Current transients for 450 μm p-n sensor - $V_{dep} = 140$ V
for $\sim 3 \times 10^5$ 1 keV photons focused to $\Phi \sim 10 \, \mu m$

Charge collected on strip sensor with 80 μm pitch
2. Plasma Effect and Charge "Explosion"

Comparison simulation (Gärtner - WIAS) with measurements (J. Becker):

Simulation:
- 10^7 eh-pairs
- $V_{bias} = 200$ V
- n-doping: $8.2 \cdot 10^{11} \text{cm}^{-3}$

Agreement with data reasonable (for proper mobility model)

Big effect (in particular for high density of low-energy X-rays)

Program development supp. by XFEL Project "Charge explosion" (at WIAS: K. Gärtner, at MP-HLL: R. Richter, experimental check and relevance for experiments at UNI-HH: J. Becker)

J. Becker et al., NIMA 624(2009)716
2. Plasma Effect and Charge “Explosion”

Normalized point-spread functions for 12 keV γ's focused to Ø ~10 μm

High bias voltage (>500 V) desirable to reduce influence of plasma effect

[not shown: same conclusion if a charge collection time < 60 ns is required]
3. Radiation Damage

XFEL requirements: 1 GGy (SiO$_2$) for 3 years operation (non-uniform !)
Few data on X-ray damage for high-ohmic structures for such high doses

→ Work at UHH:
- Irradiate test structures from different vendors to extract “microscopic” and “macroscopic” parameters due to X-ray radiation damage
- “Understand” impact of above parameters on sensor performance, via measurements on irradiated sensors and detailed TCAD simulations
- Optimize sensor design using TCAD simulations
- Order “optimized” sensors (Aug.2012) and verify performance (early 2013)

Effects of X-ray radiation damage for p+n sensors:
- No bulk damage for $E_\gamma < 300$ keV
 → “Surface” damage: Build-up of oxide charges and Si-SiO$_2$ interface traps
 → Accumulation layers form (or increase)
 → High field regions appear reducing the breakdown voltage
 → Leakage currents increase due to interface states
 → Depletion voltage and inter-pixel capacitance increase
 → Charge losses close to the Si-SiO$_2$ interface occur (increase)
3. X-ray Induced Defects in Si Sensors

Generation of eh-pairs in SiO₂

for 500 nm SiO₂: $4 \cdot 10^{16}$ eh/cm² for dose of 1 MGy
(compared to 10^{15} cm⁻² surface states)

No. eh-pairs depends on ionization density and E-field

Transport of free carriers

3. X-ray Induced Defects in Si Sensors

- **Transport of free carriers**
 - \(\mu_{\text{electrons}} \sim 20 \text{ cm}^2/\text{V}\cdot\text{s} \) → e's mainly escape
 - \(\nabla \mu_{\text{holes}} \sim < 10^{-5} \text{ cm}^2/\text{V}\cdot\text{s} \) → h's trapped in SiO2
 - or (mainly) at Si-SiO2 interface
 - [there are \(O(10^{15} \text{ cm}^{-2}) \) surface states !]

- **Trapping in SiO2 interface**
 - e-h pairs created by ionizing radiation

- **Effects on sensor**

3. Damage of SiO₂ and at Si–SiO₂ Interface

Oxide trapped charges (N_{ox}):
- Mainly positive oxygen-vacancy defects
 - one shallow trap \(\rightarrow \) hole transport,
 - one deep trap \(E'_\gamma \approx 3 \text{ eV} \)
saturation: h-trapping = eh - recombination

Border oxide traps ("add" to \(N_{ox} \)):
Positive \(E'_\gamma \) defect can exchange charge with Si depending on Fermi-level on time scales 0.01 s to seconds

Interface traps (D_{it} \(^\ast\)):
Traps at interface (no barrier!)
dangling bond defects (P_b) -
\(H^+ \) released when \(h \) captured:
\[\text{SiH} + H^+ \rightarrow (\text{Interface Trap})^+ + H_2 \]
No. limited by no. of dangling bonds

\(^\ast\) Distribution of traps in the Si bandgap:
\(D_{it} \) [1/(eV cm²)]

Mobile ions: not an issue anymore

3. Characterization of Microscopic Defects: D_{it}

Test structures (diff. vendors + crystal orientations, oxide thickness, + ...)

MOS Capacitor “MOS-C”

Gate Controlled Diode “GCD”

TDRC: Properties of interface traps
(Thermal Dielectric Relaxation Current)

- Bias MOS-C in e-accumulation
 → fill interface traps with electrons
- Cool to 10 K → freeze e in traps
- Bias to inversion and heat up to 290 K
→ I_{TDRC} due to release of trapped e’s
 → $I_{TDRC}(T) \rightarrow D_{it}(E)$
→ (Energy levels + widths + densities)$_{it}$

*) Temperature $T \rightarrow E_c - E_{it}$ (T dependence of Fermi level)

Parameterize by 3 states - not unambiguous!
3. Characterization of Microscopic Defects: N_{ox}

C/G-V curves for CMOS-C:
- $D_{it}(E)$ allows calculation of C/G-V curves as function of frequency (assuming values for trap cross sections)
- Oxide charge density N_{ox} just shifts curves along the V-axis $\rightarrow N_{ox}$

For details and (some of) the experimental complications, see: J.Zhang et al., JSR19/3(2012)340,
3. Characterization of Macroscopic Effects: J_{surf}

Surface current density from GCD:
- Measure I-V curve
- J_{surf} dominated by mid-gap traps

E-field at Si-SiO$_2$ interface:
- Shielded

T-dependence of I_{surf}

$J_{surf} \propto T^2 \times e^{-\frac{0.605 \, eV}{kT}}$

3. Summary: Dose Dependence of \(N_{ox} \) and \(J_{surf} \)

Vendors: CiS, Hamamatsu, Canberra; Crystal orientations: \(<111>, <100>\); Insulator: \(SiO_2 \) (335-700 nm), with and without additional 50 nm \(Si_3N_4 \)

- Results reproducible (after some annealing)
- Spread of about a factor 2
- \(N_{ox} \) saturates for \(~1 - 10 \) MGy
- \(J_{surf} \) peaks at 1-10 MGy, then decreases

\[\text{Dose dependence of oxide charge density} \]

\[\text{Dose dependence of surface current density} \]

- Equilibrium h-trapping and eh-recombination ?
- E-field effects due to oxide charges ?
\[\Rightarrow \text{Understanding needs more studies} \]

X-ray radiation damage saturates !!! 😊
3. E-Field Dependence of N_{ox} and J_{surf}

Irradiation MOS-C and GCD with bias applied
- CiS <100> with ~350 nm SiO$_2$ + 50 nm Si$_3$N$_4$

$V_{bias} > 0$: Increase of N_{ox} and I_{surf}

$V_{bias} \leq 0$: Only weak dependence

For p+n sensor: $E_{ox} < 0 \rightarrow$ no problem

E-field in oxide is not a problem for N_{ox} and J_{surf}
3. Annealing of N_{ox}

MOS-C and GCD irradiated to 5 MGy and annealed at 60 and 80°C
- CiS $<111>$ with ~350 nm SiO$_2$ + 50 nm Si$_3$N$_4$

 - Described by “tunnel anneal model” [T.R. Oldham et al., 1988]

$$N_{ox}(t) = N_{ox}^0 \cdot (1 + t/t_0)\;\frac{\lambda}{2\beta} \; \text{with} \; t_0(T) = t_0^* \cdot \exp \left(\frac{\Delta E}{k_B T} \right)$$

1/\lambda ... width of hole trap distr. in SiO$_2$
$t_0(T)$... tunneling time constant
β ... related to tunnel-barrier height
ΔE ... $E_{trap} - E_{Fermi}$

3. Annealing of N_{ox}

"Tunnel anneal" model: How to obtain a non-exponential t-dependence?

T.R. Oldham et al., IEEE Trans. NS-33/6(1986)1203 - (with some modification by J. Zhang/R. Klanner)

Hole trap distribution:

$$N_{ht}(x) = \lambda \cdot N_{ox}^0 \cdot \exp(-\lambda \cdot x)$$

Electrons tunnel and anneal hole traps

\Rightarrow Annealed oxide charges:

$$\Delta N_{ox}(t) = \int_0^{x_m(t)} N_{ht}(x) \, dx$$

λ: effective tunneling time constant

ΔE: distance trap level to E_{Fermi}

β: parameter related to barrier height

$$x_m(t) = \frac{1}{2\beta} \cdot \ln\left(\frac{t+t_0}{t_0}\right)$$

with $t_0(T) = t_0^* \cdot \exp\left(\frac{\Delta E}{k_B T}\right)$

$N_{ox}(t) = N_{ox}^0 \cdot (1 + t/t_0)^{-\frac{\lambda}{2\beta}}$

$\Delta E = E_{ht}(SiO_2) - E_{Fermi}(Si) = 0.91$ eV

$E_{ht}(SiO_2) \sim 6$ eV - compatible with existing data

\Rightarrow Slow N_{ox} annealing: At 20°C <50% annealing in 3 years (assuming model is correct!)
3. Annealing of N_{it} - Microscopic View

GCD irradiated to 5 MGy and annealed 80°C

- $\text{cI}_\text{S} \ \langle 111 \rangle$ with $\sim350 \ \text{nm} \ \text{SiO}_2 + 50 \ \text{nm} \ \text{Si}_3\text{N}_4$

$\text{J. Zhang et al., arXiv:1210.0427(2012)}$

![Graph showing TDRC signal vs temperature](image_url)
3. Annealing of J_{surf}

MOS-C and GCD irradiated to 5 MGy and annealed at 60 and 80°C

- CiS <111> with ~350 nm SiO$_2$ + 50 nm Si$_3$N$_4$

- Described by “two reaction model” \[\text{[M.L. Reed 1987]} \]

\[I_{\text{surface}}(t) = I_{\text{surface}}^0 \cdot (1 + t/t_1)^{-\eta} \quad \text{with} \quad t_1(T) = t_1^* \cdot \exp \left(\frac{E_a}{k_B T} \right) \]

→ Fast annealing: At 20°C ~50% annealing in 5 days (assuming model is correct!)

Message: N_{ox} and J_{surf} anneal with time

3. Impact of Radiation Damage on Sensors

Sensors irradiated:
- AC coupled from CIS (80 μm pitch)
- DC coupled from Hamamatsu (50 μm pitch)

\[
\text{p}^+ \text{ on n Si strip sensor:}
\begin{align*}
&\text{\langle100\rangle n-substrate} \\
&\text{High resistivity: 2 - 5 kΩ\cdot cm} \\
&\text{Thickness: 285 ± 10 μm} \\
&\text{Active area: 0.62 cm}^2 \\
&\text{“Oxide”: 300 nm SiO}_2 + 50 \text{ nm Si}_3\text{N}_4 \\
&\text{Strip length: 7.8 mm} \\
&\text{Strip pitch: 80 μm} \\
&\text{Strip number: 98}
\end{align*}
\]

X-ray irradiation environments:
- @DESY DORIS III beamline F4
- Typical energy is 12 keV
- Dose rate in SiO\(_2\): 200 kGy/s
- \textit{Doses: 1 MGy}
- \textit{Irradiated sensors:}
 - \textit{sensor 1: irradiated without bias}
 - \textit{sensor 2: irradiated with 35 V bias}
AC-coupled CIS sensor:

Total Leakage Current

- Measurement for 0 MGy
- Measurement for 1 MGy
- Measurement for 10 MGy
- Simulation for 0 MGy
- Simulation for 1 MGy
- Simulation for 10 MGy

Interface current \((D_{it})\) dominates
- Current from depleted interface (E-field)
- Interface area changes with \(V_{bias}\)
 - seen by X-ray users
 - minimize depleted interface area
 - minimize gap between implants/Al

Important for sensor optimization

Robert Klanner - Univ. of Hamburg - Jour
AC-coupled CIS sensor:

For pad sensor $C = \frac{\varepsilon \varepsilon_0 A}{w_{\text{depletion}}} \to \frac{1}{C^2} \sim V$ up to depletion, then $C = \text{constant}$

Effects of $N_{\text{ox}} \rightarrow$ increase of electrons in accumulation layer
- Step in $1/C^2$ when undepleted regions below SiO_2 separate
- Voltage required to deplete entire sensor depends on N_{ox}

No significant impact - however, good to know 😊
3. Impact of Radiation Damage on Sensors: V_{bd}

Simulations 2-dim [x,z and r,z] and 3-dim

$N_{ox} \rightarrow$ accumulation layer \rightarrow changes curvature p^+-depletion \rightarrow changes E-field

Breakdown (V_{bd}) depends on N_{ox}, t_{ox}, p^+-implant, Al-overhang, potential on top of sensor (passivation layer), technology, etc.

Major challenge to reach $V_{bd} > 500$ V after irradiation

J. Schwandt
4. Charge Losses close to Si-SiO$_2$ Interface

Worry: Do charges trapped at interface cause pile-up?

Positive Charges (N_{ox}, D_{it})

→ e-accumulation + potential minimum

→ Charges stored ("lost")

p’n strip sensor: 50μm pitch, $N_{eff}=10^{12}$cm$^{-2}$

Experiment: TCT (Transient Current Technique)

→ Significant charge losses observed
4. Charge Losses close to Si-SiO$_2$ interface

- Losses limited to few μm below SiO$_2$
- Charges spread in ps over acc. layer
- Time to reach equilibrium after losses 10-100 μs \gg 220 ns

\textbf{Charge losses no problem}

\textbf{Side remark:}

TCT with focused light and few μm penetration:

- An excellent tool to study the dependence of accum.layers on radiation damage and the (time/humidity dependent) boundary conditions on the sensor surface
- It is observed that charge losses depend on time, with constants strongly correlated with humidity (\rightarrow surface conductivity ???)
- Time constants differ by factor 120

Hole losses vs. time after changing bias voltage from 500 V to 200 V: p'n strip sensor, 50 μm pitch, 0 Gy.
600 nm laser, 100k eh-pairs injected

T.Pöhlsen et al., arXiv:1207.6538(2012), (subm. to NIM-A)
4'. Surface Conductivity and Steady-State

Another way to measure the time dependence of surface potentials:

- $I_{GCD}(t)$ for different relative humidities
- $V_{G1}(t)$ for different relative humidities

Time constant changes by factor ≈ 50 between $\approx 30\%$ and $\approx 45\%$ RH
4. Charge Losses and Surface Boundary Conditions

Do we care what happens on the surface (passivation) of the sensor?

ATLAS test sensor: $V_{\text{breakdown}}$ depends on humidity!

TCAD Simulation

(non-irradiated strip sensor)

- "humid" $E_T = 0$ on surface
 - No accumulation layer
 - Potential low below SiO_2
 \rightarrow moderate E-fields at corners of p^+ implants

- "dry" $Q = 0$ on surface
 - Accumulation layer
 - Potential high below SiO_2
 \rightarrow High E-fields at corners of p^+ implants

\rightarrow Low breakdown voltage

NB: Vacuum = very dry!!

Has to be understood for sensor design

Work with producers to solve this (well known by experts) problem?

F.G. Hartjes NIMA 552(2005)168

Fig. 3. Example of the breakdown behaviour in a wet (45% < RH < 50%) and in a dry (RH < 5%) atmosphere.
5. AGIPD Sensor: Specifications

Sensor specifications *(based on science and feasibility)*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>mechanical thickness</td>
<td>$500 \pm 20 , \mu m$</td>
<td>mounting tolerances, X-ray conv. efficiency</td>
</tr>
<tr>
<td>flatness (sensors after cutting)</td>
<td>$< 20 , \mu m$</td>
<td>bump bonding, value to be discussed (v. t. b. d.)</td>
</tr>
<tr>
<td>distance pixel edges to cut edges</td>
<td>$1200 , \mu m$</td>
<td>dead space for science</td>
</tr>
<tr>
<td>n doping</td>
<td>$3-8 , k\Omega \cdot cm$</td>
<td>depletion voltage, sideway depletion at edges</td>
</tr>
<tr>
<td>dead layer n*-side</td>
<td>$< 0.5 , \mu m Al, < 1 , \mu m n^* Si$</td>
<td>minimize, but no compromise on breakdown</td>
</tr>
<tr>
<td>doping non-uniformity</td>
<td>$< 10%$</td>
<td>distortions in charge collection</td>
</tr>
<tr>
<td>pixel dimensions</td>
<td>$200 , \mu m \times 200 , \mu m$</td>
<td>see sensors design</td>
</tr>
<tr>
<td>nominal operating voltage</td>
<td>$500 , V$</td>
<td></td>
</tr>
<tr>
<td>breakdown voltage</td>
<td>$> 900 , V$</td>
<td>Sensor should operate stably at $> 900 , V$, high voltage options for high photon density: mounting, pulse shape, dead space at edges</td>
</tr>
<tr>
<td>coupling type</td>
<td>DC</td>
<td></td>
</tr>
<tr>
<td>inter-pixel capacitance@500V</td>
<td>$500 , \text{fF}$</td>
<td>noise, cross-talk</td>
</tr>
<tr>
<td>total dark current sensor@500V</td>
<td>$50 , \mu A$</td>
<td>power</td>
</tr>
<tr>
<td>max. dark current/pixel@500V</td>
<td>$50 , \text{nA}$</td>
<td>noise, operation of read-out ASIC</td>
</tr>
<tr>
<td>max. dark current CCR@500V</td>
<td>$20 , \mu A$</td>
<td></td>
</tr>
</tbody>
</table>
5. AGIPD Sensor: Optimization

Optimization using TCAD with radiation damage parameters

Performance parameters optimized
- Breakdown voltage
- Dark current
- Inter-pixel capacitance
- Dead space

1. Pixel:
 - Gap
 - Al overhang
 - Radius of implant and Al at corners

2. Guard-ring structure + sensor edge
 - Number of rings
 - Implantation width
 - Spacing
 - Al overhangs
 - Radii
 - Scribe line

3. Process parameter:
 - Junction depth
 - Oxide thickness
 - Overall passivation

5. AGIPD Sensor: Optimization Strategy

- Performance to be optimized:
 - Pixel:
 1. Breakdown
 2. Surface current
 3. Inter-pixel capacitance
 - Guard-rings: 1. V_{bias} (1000 V) over 1.2 mm for doses between 0 and 1 GGy (nonuniform)
 2. Bulk not depleted at scribe line (no leakage current from the edge)

- Strategy of guard-ring (GR) optimization (2D simulations in (x,y) and (r,z) coordinates):
 - 0 GR: Study breakdown behavior of 0 GR (CCR only) for different oxide charges as function of oxide thickness and Al overhang
 - Estimate number of floating GRs for 1000 V
 - Vary spacing between rings, implant width and overhang to achieve maximum V_{bd} ≈ equal electric field
 - Minimize space required

- Strategy of pixel optimization (2D „strip sensor“ calculation used):
 - Optimize oxide thickness, Al overhang, gap and implantation depth with respect to breakdown voltage, dark current and capacitance
 - Extrapolation of dark current and capacitances to „3D values“
 - Check breakdown voltage + dark current with 3D simulation (only 1/4 pixel used due to grid size)

Discuss only guard ring optimization due to lack of time
5. Guard Ring Optimization: 0 GR V_{bd} vs. d_{ox} and d_{p+}

2-D (x,y) simulations (for 0 guard ring - GR):

Strong dose dependence:
(V_{bd} \sim400V for $N_{ox} < 10^{11}$cm$^{-2}$)

Sudden decrease in V_{bd}:
- Si below Al overhang gets depleted \rightarrow voltage drop over larger region \rightarrow E smaller for a given (high) N_{ox}: V_{bd} increases with ↓ d_{oxide} and ↑ p^+-implant depth

For high radiation damage optimization is very different than for unirradiated sensor - V_{bd} \sim 70 V (0 GR) can be reached
5. Guard Ring Optimization: 15 Guard Rings vs. V_{bd}

Optimize GR layout

1 gap (0 GR) $\rightarrow V_{bd} \sim 70$ V
\rightarrow for $V_{bd} \sim 1000$ V need 16 gaps (15 GR)

Optimize spacing, width implant, Al overhang
for equal max. E-field and minimal space

+ Assure that depletion region does not touch cut edge (critical for low N_{ox} !)

Result:

- Gap pixel to CCR: 20 μm
- Width implantation window CCR: 90 μm
- Al overhang CCR: 5 μm
- Gap CCR to 1st guard ring (GR): 12 μm
- Width of implantation window GR 25 μm
 - Al overhang left (towards pixel) of GR 1, 2, ... 15: 2, 3, ... 16 μm
 - Al overhang right (away from pixel) of GR 1 – 15: 5 μm
- Gap between GR 1-2, 2-3, ... 14-15: 12, 13.5, ... 33 μm
- Distance pixel to cut edge: 1.2 mm

Optimized pixel and guard ring layout meets all specifications 😊

GDS printout: J. Schwandt and J. Zhang
6. Summary

Challenges for pixel sensors at E-XFEL have been studied at UHH:

- Plasma effect
- Charge losses close to Si-SiO$_2$ interface – surface effects
- Pile-up
- Radiation damage

Sensor optimized using TCAD with radiation damage implemented

- Design optimization depends on dose
- 15 guard rings needed for V_{bd} O(1000 V)
- Layout + technological parameters found which meet specifications

Sensor ordered → delivery early 2013

Comment: Compared to bulk damage little efforts in the detector community on the study of X-ray damage for sensors (and there have been surprises in the past !)

Many thanks to UNI-Hamburg- + AGIPD-colleagues + sponsors
The End