X-Ray Polarimetry and Cadmium Zinc Telluride (CZT) Detectors

M. Beilicke, Q. Guo, F. Kislat, K. Lee, J. Martin, <u>H. Krawczynski</u> (Wash. Univ.), A. Burger, M. Groza (Fisk Univ.), J. Matteson (UCSD)

Plan of Talk:
Motivation: X-Ray Polarimetry.
CZT Detectors:

Development.
Exemplary architectures.

Summary.

X-Ray Observations

Chandra & XMM Newton (1999-present, 0.1-12 keV)

Tycho Super Nova Remnant

⇒ Riccardo Giacconi receives Nobel Price in Physics for X-ray Astrophysics (2002). • *Few polarimetric results*, except Crab Nebula, Cyg X-1 with OSO-8 (Weisskopf et al. 1978) and Integral (Dean et al. 2008, Laurent et al. 2011).

Polarization measurements:

 ⇒ Statistics
 (5% pol. degree: ~10,000 γ's for 99% confidence level detection)
 ⇒ Systematics
 (~10% systematic errors on Integral results)

X-Ray Polarimetry

GEMS Gravity and Extreme Magnetism SMEX (2-10 keV)

Swank et al., GSFC

X-Calibur (5-70 keV, 20-70 keV):

Krawczynski, Beilicke, Guo, Kislat et al.

Photoelectric effect polarimeters:
4 Time Projection Chambers, each
30 cm demethyl ether at 0.25 atm.

Compton effect polarimeter:

 - 14cm scintillator rod surrounded by 32 CZT detectors.

Hard X-Ray Polarimetry with X-Calibur

- I.6 ton payload,
- 40 km flight altitude,
- Pointing accuracy: 0.015°

- 255 shell Al mirror;
- 50 cm² area at 30 keV;
- (Pt/C coating).

Hard X-Ray Polarimetry with X-Calibur

Rotation: cancel systematics.

Results with Polarized Beam

Reconstructed polarization fraction: 52%.

One-Day Balloon Flight (Fort Sumner, NM, 2013): Observe Cyg X-1, GRS 1915, Crab, Her X-1, Mrk 421 with 4% MDP for Crab.

Science Driver: X-ray Polarimetric Observations of Black Holes

Cygnus X-1:

EXOSAT

Stellar mass black hole in X-ray binary:

Energy resolved (non-imaging) polarimetry
 ⇒ map accretion flow and spacetime!

19 M_{\odot} O-star orbits "invisible" 15 M_{\odot} companion with 5.6 day period.

Science Driver: X-ray Polarimetric Observations of Black Holes

Guo et al. (2011):

 $a_* = \frac{cJ}{GM^2} > 0.97 (3\sigma)$

- X-ray polarimetry (0.5-100 keV):
- Test Accretion Disk Models.
- Test No-Hair Theorem of GR.
- Constrain corona geometry.

Simulation Results

HK (2012, ApJ, in press, arXiv:1205.7063)

Simulation Results

⇒ Measure Black Hole Spin and some (but rather limited) sensitivity to test No Hair Theorem (HK 2012).

> Also: Connors et al. (1980), Schnittman & Krolik (2010).

Cadmium Zinc Telluride X-Ray and Gamma-Ray Detectors

- ✤ Cd_(1-x) Zn_x Te; x~0.1.
- Large direct band-gap:
 - $E_g = 1.57 \text{ eV}; E_i = 4.64 \text{ eV}$
 - Room-temp operation!
- High stopping power:
 - High <Z>: 49.1,
 - High-density: 5.78 g cm
 - Detector thickness: 0.2...1.5 cm.
- Detector Units (Endicott, Orbotech, Redlen, Creative Electron, Qickpak):
 Standard: 0.5x2x2 cm³;
 - Large: 0.5x4x4 cm³ & 1.5x2x2 cm³.
- Electronic properties:

 - ♦ $\mu \tau |_h = 5 \times 10^{-5} \text{ cm}^2 \text{ V}^{-1}.$

Pixel Detector

Coplanar Grid Detector

Planar CZT Detector

[₽]

+

Planar Detectors vs. Small Pixel Detectors

Barret et al., Luke et al. 1995

Pixel CZT Detector

 $\overline{2}$

e

Applications for CZT Detectors

2-100 keV X-rays (vs. Si):

- Energy thresholds ≥ 2 keV.
- Energy res. 0.5-2 keV FWHM.
- Spatial resolutions ~ 1mm.
- Better stopping than Si.
- Higher $\sigma_{PE}/\sigma_{C.}$

>100 keV gamma-rays (vs. Scint. & Germanium):

- Better energy (<1% FWHM @ 662 keV) and spatial resolutions than the best scintillators.
- No need for cryogenic cooling.

Material of choice for many spectroscopic photon detection in

02010 WUSTL & BFE

Detector Fabrication:

1 mm

- ✤ Polish with abrasive.
- 5% Br, 95% Methanol wet etch;
- Photolithography;
- Contact deposition with e-Beam evaporator.

Detector Fabrication

Au on cathode:
 blocking contact on
 n-type CZT
 ⇒ reduced dark current.

In & Ti on anode:
 ohmic contact on
 n-type CZT
 ⇒ reduced noise.

Optimization of Detector Contacts

Good yield for detectors with pixels at ~100 micron pixel pitch.

Optimization of Photolithography

Pixelated Detectors

Cross-strip CZT detector: $0.5 \times 4 \times 4 \text{ cm}^3$. Dual-anode CZT detectors: $I \times 2 \times 2 \text{ cm}^3$.

Limited energy resolutions (>~3%) and modest detection efficiency owing to modest small pixel effect and weak cathode signals.

Alternative Contact Designs

ASIC board:

ASIC developed by G. de

Geronimo (Brookhaven):

- I-2 keV noise (FWHM).

- 32 channel;

CZT on ceramic substrate:

CZT on ceramic substrate:

Tower with 8 detectors:

Detector Systems

CZT with 4096 pixels at 350 µm pitch, footprint 2.24 x 2.24 cm²;
ASIC: 2048 channels ASIC (L. J. Meng, UIUC);

• Wash. Univ. readout system:

• CdTe detector (2mm).

• Energy res. 4 keV FWHM.

Towards Smaller Pixels

A. Burger, M. Groza
(Fisk University)
H. Krawczynski,
I. Jung (Wash. Univ)

• Infrared imaging (I.1 μ m) reveals non-uniformities correlated with underperforming pixels.

Infrared Imaging

E-field from Pockels (CZT: 0.5x0.9x0.9 cm³):

E-field from Simulations:

Pockels effect can be used to measure E-field.

Groza et al. 2010

Pockels Imaging

Pockels image of 0.5x1.9x1.7 cm³ CZT detector suggests "layered E-field" inside detector.

> Transient analysis confirms results from Pockels imaging.

Pockels Imaging

* $\mu_e = 700 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, $\tau_e = 5.9 \times 10^{-6} \text{ s};$ * $\mu_h = 50 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, $\tau_h = 10^{-6} \text{ s}.$

Detector Simulations

Beilicke et al. 2012

Orbotech CZT, 0.5x2x2 cm³

Results: ⁵⁷Co spectrum after threshold minimization.

Energy Resolutions (1x2x2 cm³ eV-Products CZT)

Beilicke et al. 2012

Steering grids improve performance!

Direct Comparison of Different Anode Patterns

CZT Based Astroparticle Physics Experiments

Experiment	Start	Number of Detectors	Volume of Detectors	Pixels per Detector	Energy Range
Swift (BAT)	2004	32,768	0.2x0.4x0.4 cm ³	1	15-150 keV
NuSTAR	2012	4	0.2x1.9 x1.9cm ³	1024	5-80 keV
X-Calibur	2013	32	0.2x2x2cm ³ 0.5x2x2cm ³	64	20-70 keV
COBRA	tbd	9,556	0.5x4x4cm ³	256	2-3 MeV

The SWIFT Burst Alert Telescope

Property	Description	
Aperture	Coded mask	
Detecting Area	5200 cm ²	
Detector	CdZnTe	
Detector Operation	Photon counting	
Field of View	1.4 sr (partially-coded)	
Detection Elements	256 modules of 128 elements	
Detector Size	4 mm x 4 mm x 2mm	
Telescope PSF	17 arcmin	
Energy Range	15-150 keV	

The Nuclear Spectroscopic Telescope Array NuSTAR

Parameter	Value	Parameter	Value
Pixel size	$0.6 \text{ mm}/12.3^{\prime\prime}$	Max processing rate	400 evt/s
Focal plane size	$13' \times 13'$	Max flux meas. rate	$10^{4}/s$
Pixel format	32×32	time resolution	$2\mu sec$
Threshold	2.5 keV (each pixel)	Dead time fraction (weak source)	2%

Summary

- In Astrophysics CZT has become the material of choice for the detection of hard X-rays (5 keV 1 MeV) with excellent spatial and energy resolutions.
- Infrared imaging and Pockels studies show that CZT crystals exhibit a wide range of non-uniformities. Even some good detectors show horizontal E-field variations.
- Thick (>2mm) detectors work best with small pixels.
- Main effect of steering grids: improvement of detection efficiency by ~20%.
- Excellent energy resolutions require small pixels, and thus a considerable number of readout channels.
- Not covered here: COBRA (Zuber et al.), protoEXIST (Grindley et al.) and 3-D CZT time projection detectors (He et al.).