The CMS Tracker Upgrade for HL-LHC

Project overview and outlook
Outline

➢ The HL-LHC Tracker: requirements
➢ Overview of R&D
 ▫ Development of “p_T modules”
➢ Tracker geometries
➢ Expected performance
➢ Ultimate pixel upgrade
➢ Summary and outlook
The Tracker in CMS

- Total weight: 12,500 t
- Overall diameter: 15 m
- Overall length: 21.6 m
- Magnetic field: 3.8 T
The Tracker layout

TOB
6 layers
5208 modules

TID
2x3 disks
816 modules

TIB
4 layers
2724 modules

TEC
2x9 disks
6400 modules

Single-sided
Double-sided (sandwich, tilted 100 mrad)

ρ (mm)

η

ξ (mm)

Pixels

Thin
(320 µm)
1 sensor

Thick
(500 µm)
2 sensors

Single-sided
Double-sided (sandwich, tilted 100 mrad)
In a nutshell...

Volume: 23 m³
Active area: 210 m²
Modules: 15'148
Front-end chips: 72'784
Read-out channels: 9'316'352
Bonds: 24'000'000
Optical channels: 36'392
Raw data rate: 1 Tbyte/s
Power dissipation: 30 kW
Operating T: −10°C
The HL-LHC

A plan for the LHC in the next 10 years [L. Rossi, IPAC 2011]

- Pixel Upgrade “phase 1”
- Full Tracker Upgrade “phase 2”

- 8 TeV
- splice consolidation
- button collimators, R2E project
- experiment beam pipe
- injection upgrade
cryogenics Point 4
- dispersion suppression collimation, R2E project
- experiment upgrade phase 1
- cryolimit interaction regions
- HL-LHC installation
- experiment upgrade
- nominal luminosity 70%
- 10 x nominal luminosity
- 2 x nominal luminosity
Basic requirements and guidelines - I

Radiation hardness
- Ultimate integrated luminosity considered ~ 3000 fb^{-1}
 - To be compared with original ~ 500 fb^{-1}

Granularity
- Resolve up to 200÷250 collisions per bunch crossing
 - Nominal figure of 5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} @ 40 \text{ MHz} corresponds to \geq 100 collisions
 - Keep 20 MHz as worst-case limit
- Maintain occupancy at the few % level
- Requires much shorter strips!

Improve tracking performance
- Reduce material in the tracking volume
 - Improve performance @ low p_T
 - Reduce rates of nuclear interaction, γ conversions, bremsstrahlung…
- Reduce average pitch
 - Improve performance @ high p_T
Basic requirements and guidelines – II

Tracker input to Level-1 trigger

- \(\mu, \, e \) and jet rates would exceed 100 kHz at high luminosity
 - Even considering “phase-1” trigger upgrades
- Increasing thresholds would affect physics performance
 - Performance of algorithms degrades with increasing pile-up
 - Muons: increased background rates from accidental coincidences
 - Electrons/photons: reduced QCD rejection at fixed efficiency from isolation
- Even HLT without tracking seems marginal
- Add tracking information at Level-1
 - Move part of HLT reconstruction into Level-1!

Full-scope objectives:

- Reconstruct “all” tracks above 2 \(\div \) 2.5 GeV
- Identify the origin along the beam axis with \(\sim \) 1 mm precision
General concept

- Silicon modules provide at the same time “Level-1 data” (@ 40 MHZ), and “readout data” (@ 100 kHz, upon Level-1 trigger)
 - The whole tracker sends out data at each BX: “push path”

- Level-1 data require local rejection of low-\(p_T\) tracks
 - To reduce the data volume, and simplify track finding @ Level-1
 - Threshold of ~ 1÷2 GeV ⇒ data reduction of one order of magnitude or more

- Design modules with \(p_T\) discrimination (“\(p_T\) modules”)
 - Correlate signals in two closely-spaced sensors
 - Exploit the strong magnetic field of CMS

- Level-1 “stubs” are processed in the back-end
 - Form Level-1 tracks, \(p_T\) above 2÷2.5 GeV
 - To be used to improve different trigger channels
Sensors R&D - I

HPK project

- Different materials
 - Float-zone (FZ), Magnetic Czochralski (MCz), Epitaxial (Epi)
- Different thicknesses and technologies
 - n-bulk, p-bulk with p-spray and p-stop isolation
 - Wafers with 2nd metal layer
- Several strip and pixel geometries
- ~ 6 wafers of each material; >150 wafers in total
- Exhaustive program of proton and neutron irradiations
- Lab tests complemented by device simulations

Gaining excellent understanding of materials

- Doping profiles and process details
- Almost reverse engineering!
HPK project main goals

- Choose material and technology for outer Tracker Upgrade
 - Target: early 2013, then move on to sensor prototyping
 - Current activities likely beyond the scope of the immediate CMS needs!
- Provide a solid baseline in planar technology for pixel phase-2 upgrade
 - To be compared with more “exotic” technologies
 - Ongoing R&D on diamonds and 3d silicon

Qualification run @ Infineon

- 25 wafers produced
 - p-on-n 300 μm thickness as in present TK
- Basic tests done, irradiations planned
 - Nearly perfect quality out of the box!
 - E.g. 0.5% faulty strips, likely to improve in the future
- Potential to explore different options
 - P-type bulk, thinner sensors, and even 8” wafers!
- Very promising for the future!
Electronics system

Concept well-advanced, based on ongoing developments

➢ Data links: Low-Power GigaBit Transceiver (LP-GBT)
 ▪ Further evolution of GBT (under development)
 ▪ 65 nm technology, simplified to minimize power and footprint size
 ▪ Same bandwidth (5 Gb/s total, 3.2 Gb/s for data)
 ▪ To be integrated at module level, with lightweight opto-coupler
 ★ Good match to expected bandwidth including L1 data, readout data and controls!

➢ Power: DC-DC converters
 ▪ Pursue ongoing developments
 ★ Will be used already in the Pixel Upgrade
 ▪ Key development to reduce material in the tracking volume
 ★ Bring in current @ 10÷12 V: gain one order of magnitude in conductor cross-section
 ★ Dominant contribution to material in present Tracker
 ▪ Also integrated at module level
 ★ Reasonable match with expected power consumption

➢ Fully integrated modules: the module is the system!
Cooling and mechanics

Cooling: two-phase CO$_2$ is the baseline
- Evaporative system + excellent thermodynamic properties of CO$_2$ can provide low-mass, high-efficiency cooling
- Experience being gained with phase-1 pixel system
 - By far the largest system ever built in HEP!
- No dedicated phase-2 R&D yet

Mechanics
- Studies of possible endcap geometries ongoing (Lyon)
 - Two-phase cooling prefers simple pipe geometries
 - Adopt rectangular modules as in barrel
 - To avoid too many module flavours
 - Several options under study
- Mechanics for barrel “double-stack” geometry under development (FNAL)
 - Layers closely-spaced in pairs (more details later) ⇒ common supporting mechanics
- Prototyping of 2S modules to start this year
 - Preparation work ongoing
More on p_T modules working principle

- Sensitivity to p_T from measurement of $\Delta(R\phi)$ over a given ΔR

- For a given p_T, $\Delta(R\phi)$ increases with R
 - A same geometrical cut, corresponds to harder p_T cuts at large radii
 - At low radii, rejection power limited by pitch
 - Optimize selection window and/or sensors spacing

 * To obtain, ideally, consistent p_T selection through the tracking volume

 e.g. Window = 5

 ![Diagram](image.png)

- In the barrel, ΔR is given directly by the sensors spacing
- In the end-cap, it depends on the location of the detector
 - End-cap configuration typically requires wider spacing

\[\Delta z = \Delta R / \tan \theta \]
p_T modules types: “2S Module”

- 2x Strip sensors
- Light and “simple”
- No z information
- Suitable for outer part

Power
- CBCs: 1.2 W
- Concentrators: 0.36 W
- Low-power GBT: 0.5 W
- GBLD + GBTIA: $0.2 + 0.1 = 0.3$ W
- Power converter: 0.4 W

- Total 2.8 W

- ≈ 5 cm long strips, ≈ 90 µm pitch, ≈ 10x10 cm² overall sensor size
- Wirebonds from the sensors to the hybrid on the two sides
- 2048 channels on each hybrid
- Chips bump-bonded onto the hybrid
- Prototyping to start during 2012!

First version of FE ASIC available and functional CBC (CMS Binary Chip)

The hybrid is the key element for the module integration!
Thermal modelling

- FEA results encouraging
 - ΔT from contacts to hottest point on sensor ~ 5°C
 - Same temperature on both sensors
 - Gradient across sensor ~ 2°C
Module design development

- Several new challenges
 - Inherent to electronics
 - Bump bonding
 - Novel technologies for hybrids
 - Yield, reliability, cost...
 - ...
 - Related to the overall assembly
 - Two sensors with one hybrid!
 - Precision
 - Support for wirebonding
 - Stiffness of the assembly
 - ...
 - New hybrid technologies, lower mass target
 - New materials
 - Surface treatment/gluing
 - ...

- Strategy: build simplified prototypes
 - Design and procure circuits implementing:
 - Bond pads
 - Resistors for power dissipation
 - Lines for connectivity tests
 - Qualify assemblies under all aspects
 - Ahead of / in parallel with development of functional components

June 8, 2012
DESY - Joint Instrumentation Seminar
Prototyping

- **WP1: gluing techniques**
 - Choice of glues, treatment of surfaces, size and location of glue joints.
 - Cold tests, irradiation tests

- **WP2: choice of materials**
 - Choice and thickness of CF
 - Research on new C-based materials
 - Test gluing, irradiation, cold

- **WP3: wirebonding tests**
 - Optimize design of sensor support in the frame (sensors-FEH)
 - Optimize module support for bonding
 - Feedback to design of hybrid and HV kapton

- **WP4: thermal tests**
 - Measure heat transfer efficiency

- **WP5: Deformation tests**
 - Measure deformations in cold in a lab setup

- **WP6: Vibration tests**
 - Test module under realistic vibrations that can be expected during transport

- **WP7: Module assembly**
 - Develop high-precision automatized and reproducible assembly procedure
 - Feedback to module design

- **WP8: FEA**
 - Thermal and deformation calculations.
 - Guide module design and compare with WP4 and WP5

- **WP9: 3d modelling**
 - Repository of drawings.
p_T modules types: “VPS Module”

- Strip / Pixel module with vertical interconnections
- Single chip connected to top and bottom sensors
- Analogue paths through interposer from top sensor, segmented in ~ cm long strips
- Bottom sensor gives z info (~ mm long pixels)
- Electronics and connectivity (interposer) are technological challenges (yield, robustness, mass, large-size module)
- Several developments ongoing in parallel
 - 2D demonstrator chip functional
 - TSVs functional, 3D assembly difficult
 - Technology for interposer still an open problem
 - Data processing simulation started
 - Option to use active edge sensors
\(p_T \) modules types: “PS Module”

- **Sensors:**
 - Top sensor: strips
 - 2x25 mm, 100 \(\mu \)m pitch
 - Bottom sensor: long pixels
 - 100 \(\mu \)m \times 1500 \(\mu \)m
 - \(\approx 5x10 \text{ cm}^2 \) overall sensor size

- **Readout:**
 - Top: wirebonds to “hybrid”
 - Bottom: pixel chips wirebonded to hybrid
 - Correlation logic in the pixel chips

- **No interposer, sensors spacing tunable**

- **Power estimates**
 - Pixels + Strips + Logic \(\approx 2.62 + 0.51 + 0.38 \) W = 3.51 W
 - Low-power GBT + GBLD + GBTIA \(\approx 0.5 + 0.2 + 0.1 \) = 0.8 W
 - Power converter \(\approx 0.75 \) W

- Total \(\approx 5.1 \) W, pixel chip is the driver
Strip sensor
FE hybrid with strip ASICs
Service hybrid (readout)
Support frame
Cooling contacts
Bias kapton
Service hybrid (power)
Thermal management
Sensors supports
Thermal management
Pixel ASICs
Pixel sensor
Bias kapton
Summary of PS module features

- **“Horizontal” transmission**
 - Path for data longer, but not relevant in power budget, driven by pixel chip
 - No interposer. Potentially lighter.
 - Sensors spacing is tunable with nearly no drawback up to ~ 4 mm.
 - Can be used at low radii (down to R ≳ 20 cm – but not lower!)
 - Helps for z₀ resolution.
 - Can be used also in endcap.

- **Two halves of the module independent**
 - Inefficiency for stub finding in the middle.
 - But can be solved with TSVs
 - R&D ongoing, very encouraging results

- **Size limited to ~10×5 cm² is part of the concept (… for the time being…)**

- **Optimized design for large production / large detector**
 - Makes best use of advanced technologies for high-density substrates
 - Relies on commercial technologies
 - But do they work for our “product”? R&D needed!
 - Self-contained building block

- **Further improvement: reduce pitch on strip sensor to 50 µm**
 - Additional ~500 mW power, wirebonding pitch 50 µm on both sides
 - Better resolution on Δ(Rφ): from 41 µm to 32µm (25% improvement)
 - Improve pₜ discrimination and tracking resolution with ~ no impact on module design and mass
PS module: status and outlook

- Electronics substantially less developed compared to 2S module

- Finite Element Analysis performed using present power estimates
 - Cooling the pixel sensor is a challenge
 - Novel materials will hopefully provide a low-mass solution

- Overall power budget exceeds capability of present DC-DC converter
 - Further developments needed. A second converter would be highly undesirable.

- Expect that the development of this module will follow the 2S module with ~1 year delay
 - Adopt wherever possible common or similar technical solutions, as well as coherent concepts and procedures to validate the design
Evaluation of different tracker geometries and options: layout modelling

- Dedicated standalone software package ©
 © N. De Maio, S. Mersi, G. Bianchi
 Based also on work from V. Karimaki and G. Hall

- Allows to place in space active and passive volumes
 - Starting from a small sets of simple parameters
Simple (semi-automatic) modelling of services

Material on active elements + Material for services automatically routed
- Implements estimates of tracking performance
 - Use measurement errors to estimate the errors in track fit parameters
 - Multiple scattering treated as (correlated) a measurement error

\[y_n = \sum_{i=1}^{n-1} (x_n - x_i) \theta_i \]

Deviation due to scattering:

Error correlation matrix:

\[\sigma_{n,m} = \langle y_n y_m \rangle = \sum_{i=1}^{n-1} (x_m - x_i) (x_n - x_i) \langle \theta_i^2 \rangle \]

\[\sigma_n^2 = \frac{p^2}{12} \]

- As well as fraction of interacting particles
- Can be used in the same way to evaluate trigger performance potential
Validated by modelling the present tracker

10 GeV

Excellent accuracy out of the box!
Only a glimpse of some functionalities…

- Summarize results in three rapidity regions

\[\Delta \eta = 0.8 \]

Roughly same number of tracks expected
Example of layout

- **η**
 - 0 → 0.8
 - 0.8 → 1.6
 - 1.6 → 2.4

- **HSE modules**
- **PSE modules**
- **CMS Upgrade**
 - Barrel layers: 10
 - Endcap layers: 9
 - Number of fibers: ~41 k, ~34 k

- Geometry optimized for tracking: end-cap modules, no double-stacks, etc.
- Less layers to reduce material (improves p_T resolution at low p_T)

- This model implements a “phase-1” pixel detector
- Assumptions on material are rather conservative!
Optimization of module parameters

- Keep as ideal targets:
 - <1% efficiency @ $p_T = 1\text{GeV}$
 - Maximize efficiency @ $p_T = 2\text{GeV}$

- Limit choice of spacing to “a few” different values

- Optimize width of acceptance window at the same time
 - Between 3 and 9 strips for the example below
Stub finding and L1 tracking potential (calculated)

- Very good low-pT rejection
- Good efficiency starting from 2.5 GeV

June 8, 2012
DESY - Joint Instrumentation Seminar

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>pT (%) 10 GeV</th>
<th>pT (%) 100 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.63</td>
<td>1.92</td>
</tr>
<tr>
<td>1.5</td>
<td>1.03</td>
<td>2.33</td>
</tr>
<tr>
<td>2.5</td>
<td>1.63</td>
<td>3.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Z₀ (mm)</th>
<th>0.81</th>
<th>0.81</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 GeV pT L1 res.</td>
<td>0.81</td>
<td>0.81</td>
<td>1.10</td>
</tr>
<tr>
<td>10 GeV pT L1 res.</td>
<td>0.63</td>
<td>1.03</td>
<td>1.63</td>
</tr>
<tr>
<td>100 GeV pT L1 res.</td>
<td>1.92</td>
<td>2.33</td>
<td>3.14</td>
</tr>
</tbody>
</table>
From layout modelling to CMS simulation

- The software produces also geometry files for CMS simulation and reconstruction software
 - Including material modelling
 - Some “features” still to be fixed

- CMS software needs then to be “adapted” to work with the new geometry
 - Full automatization for any possible geometry not really feasible….

- Will be used to keep geometry and material up-to-date once the overall layout is chosen
Stub finding in simulation

- Previous layout in CMS simulation

![Diagram of previous layout in CMS simulation]

- Digitizer, clusterizer, “stub maker”
 - Meant to be realistic
 - To be reviewed
 - All results “fresh and preliminary”
Stub finding

- Barrel layer 1 @ 23 cm, sensor spacing 2.6 mm

\[\text{Cluster Rate (First layer)} \%
\]

Applying this cut \((CW<4) \) removes \(~20\%\) of clusters.
Stub finding

- Barrel layer 1 @ 23 cm, sensor spacing 2.6 mm

- Good performance for $p_T > 2$ GeV
 - This was the target

- Estimated average stub rate in worst case $\sim 1.5 / \text{module} / 25 \text{ ns}$
 - Cfr peak:
 - 6 / chip
 - 7 / module
 - Average:
 - 3 / module
 - Margin for further improvements!
Status and outlook

- Indications that data reduction and stub finding work rather well even in the worst-case location.
- p_T modules can be used down to $\gtrsim 20$ cm, with relatively large sensor spacing.
- Tuning from layout modelling validated
 - End cap still to be checked.
- N.B. Stub rates are a crucial input for the design of the electronics system!
 - Studies to be pursued. Digitizer, clusterizer and front-end logic to be developed coherently with electronics (and sensors) R&D.
- No concept, so far, to go from stubs to L1 tracks with this layout.
 - But work is now ongoing…
Optimized layout of L1 track finding

The “long-barrel” double-stack layout

Pairs of stubs are combined to form “tracklets”

Self-contained ϕ sectors. Each sector needs to be combined with the two neighbouring sectors (left and right) to “contain” \sim2.5 GeV tracks.

6 long layers = 3 Super layers

15 degree sector
Stubs, Tracklets, L1 Tracks

- Hierarchical logic to find L1 tracks
 - Within double-stack, each lower module is combined with two upper modules to form Tracklets
 - Geometry helps to keep problem “local”
 - Tracklets in each layer are extrapolated to the other two layers
 - Possible to find a track if there is at least one tracklet
 - N.B. in this layout also the outermost layer is pixellated!
 - Impact on power and cost!
 - Remove duplicates

- Concept appears to be feasible

- Only defined strategy to deliver L1 tracks so far

- Data reduction, stub and tracklet rates verified in CMS simulation and reconstruction
Alternative approach to L1 tracks

- Pattern matching in a generic layout
 - Associative Memories successfully used in CDF
 - Will be used for the ATLAS FTK
 - At Level-2!
 - Applicable to our case?

- Work started, a few groups interested

- Started looking also into “data formatting”
 - I.e. How you get the all the needed data in a given back-end crate of processors
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CMS Tracker Upgrade</td>
<td>1/1/11</td>
<td>12/21...</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Study/design of trigger architecture</td>
<td>1/1/11</td>
<td>10/9/13</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Study of substrate technologies</td>
<td>1/3/11</td>
<td>12/4/12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Materials and technologies for module design</td>
<td>12FF</td>
<td>1/1/11</td>
<td>12/4/12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sensors material, technology thickness</td>
<td>1/1/11</td>
<td>12/4/12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Options for opto packaging</td>
<td>38FF</td>
<td>1/1/11</td>
<td>12/4/12</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Design of electronics system</td>
<td>38FF</td>
<td>1/1/11</td>
<td>12/4/12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Sensors design</td>
<td>34</td>
<td>12/5/12</td>
<td>8/13/13</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ASICs prototypes design</td>
<td>3; 3</td>
<td>12/5/12</td>
<td>11/13</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Substrates prototype design</td>
<td>3; 3</td>
<td>1/2/13</td>
<td>12/3/13</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Design of module mechanics</td>
<td>38; 4...</td>
<td>3/27/13</td>
<td>2/15/14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Finalization of detector layout</td>
<td>2</td>
<td>10/9/13</td>
<td>3/25/14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ASICs prototypes fabrication</td>
<td>40</td>
<td>1/16/13</td>
<td>10/7/14</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Sensors proto procurement</td>
<td>35</td>
<td>12/4/13</td>
<td>8/12/14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Substrates prototypes fabrication</td>
<td>16</td>
<td>12/4/13</td>
<td>11/4/14</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Fabrication of frames prototypes</td>
<td>30</td>
<td>2/26/14</td>
<td>1/27/15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Mechanical structures</td>
<td>3</td>
<td>3/26/14</td>
<td>3/17/15</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Mech. struct. design</td>
<td>3/26/14</td>
<td>7/12/16</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Mech. struct. proto construction</td>
<td>29</td>
<td>7/13/16</td>
<td>6/13/17</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Mech. struct. proto validation</td>
<td>30</td>
<td>6/14/17</td>
<td>5/15/18</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Procurement of mechanical structures</td>
<td>31</td>
<td>5/16/18</td>
<td>3/17/20</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Sensors proto testing</td>
<td>16</td>
<td>8/13/14</td>
<td>1/27/15</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>ASICs prototypes testing</td>
<td>45</td>
<td>10/8/14</td>
<td>3/24/15</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Substrates prototype testing</td>
<td>17; 4...</td>
<td>11/5/14</td>
<td>4/11/15</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Design of back-end systems</td>
<td>3</td>
<td>12/3/14</td>
<td>8/18</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Module design thermal validation</td>
<td>41</td>
<td>1/28/15</td>
<td>12/29...</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Module design mechanical validation</td>
<td>41</td>
<td>1/28/15</td>
<td>10/6/15</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Financial planning, costbook</td>
<td>3</td>
<td>2/25/15</td>
<td>7/20/16</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Prototype system test</td>
<td>10; 1...</td>
<td>4/22/15</td>
<td>10/6/15</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Final ASICs design/preproduction</td>
<td>13</td>
<td>10/7/15</td>
<td>2/11/17</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Final sensors design/preproduction</td>
<td>13</td>
<td>11/4/15</td>
<td>3/11/17</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Final design module mechanics</td>
<td>13; 4...</td>
<td>1/27/16</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Commercial actions (ASICs etc.)</td>
<td>11; 13</td>
<td>7/13/16</td>
<td>3/14/17</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Procurement of final frames prototypes</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Validation of final ASICs</td>
<td>5; 8</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Validation of final sensors</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Validation of final substrates design</td>
<td>9/15/17</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Final system test</td>
<td>12</td>
<td>12/5/18</td>
<td>5/15/18</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Modules construction</td>
<td>1/18/18</td>
<td>2/16/21</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Procurement of sensors</td>
<td>1/16/18</td>
<td>10/1/19</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Procurement of optical links</td>
<td>8/8/18</td>
<td>12/24...</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Procurement of module mechanics</td>
<td>8/8/18</td>
<td>12/24...</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Procurement of hybrids</td>
<td>8/8/18</td>
<td>12/24...</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Modules assembly</td>
<td>20SS...</td>
<td>10/31/18</td>
<td>2/16/21</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Production of back-end systems</td>
<td>25</td>
<td>8/8/18</td>
<td>12/24...</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Procurement of subassemblies</td>
<td>10/21/18</td>
<td>6/10/20</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Subdetectors integration</td>
<td>48FS+0</td>
<td>6/10/20</td>
<td>5/12/21</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Tracker integration</td>
<td>48FS+0</td>
<td>5/12/21</td>
<td>4/12/22</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Tracker commissioning</td>
<td>26; 5...</td>
<td>4/13/22</td>
<td>12/20...</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Tracker delivered to LS</td>
<td>47</td>
<td>12/21/22</td>
<td>12/21...</td>
<td></td>
</tr>
</tbody>
</table>
R&D and concepts for front-end systems
- Study of substrate technologies
- Materials and technologies for module mechanics
- Sensors material, technology, thickness
- Options for opto packaging
- Definition of electronics system

ASICS, Sensors, Substrates, Frames
- Design and fabrication of prototypes
- Prototype test/qualification
- System test
- Final design / preproduction
- Qualification
- Final system test

Study/design of trigger architecture

Finalization of detector layout

Financial planning, costbook
Commercial actions (ASICs etc..)

Mechanical structures
- Design
- Prototype construction
- Prototype validation
- Procurement

Modules construction

Back-end systems
- Design
- Production

Procurement of services

Subdetectors integration
Tracker integration
Tracker commissioning
Tracker delivered to PS

Simplified excel version

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
</tr>
</tbody>
</table>
R&D and concepts for front-end systems
- Study of substrate technologies
- Materials and technologies for module mechanics
- Sensors material, technology, thickness
- Options for opto packaging
- Definition of electronics system

ASICs, Sensors, Substrates, Frames
- Design and fabrication of prototypes
- Prototype test/qualification
- System test
- Final design / preproduction
- Qualification
- Final system test

Study/design of trigger architecture

Finalization of detector layout

Financial planning, costbook
Commercial actions (ASICs etc.)

Mechanical structures
- Design
- Prototype construction
- Prototype validation
- Procurement

Modules construction

Back-end systems
- Design
- Production

Procurement of services

Subdetectors integration
- Tracker integration
- Tracker commissioning
- Tracker delivered to PS

We are already one year late!
Phase 2 pixel

- The phase-1 pixel detector is not the CMS ultimate pixel
- Construction time is shorter, ~2 more years to converge on a design compared to the outer tracker
- Discussions started; convergence on some basic concepts
 - Aiming at a significantly smaller pixel size. Possibly as small as $30 \times 100 \ \mu m^2$?
 - 65 nm seems to be a good technology choice
 * Strong technology node, likely to be available for very long
 * Can squeeze 4× digital logic in same area wrt 130 nm
 - Thin planar sensors with small pixels could be a robust baseline
 - 3d silicon very appealing option with potentially excellent performance
 - Diamonds the ultimate radiation hardness? Production and cost still an issue
 * In any case low signal requires a chip with low threshold
 - Several important system issues need to be addressed
 * Synergies with Outer Tracker are necessary, but differences are relevant
- Sketch of a 5-year development plan defined
 - Should yield choice of sensor technology, and design of readout chip
 - Interested groups gathering together
Phase 2 pixel

A major question is, again, the trigger
- Local data reduction is not viable below 20 cm
- Regional readout is probably the way to go, if needed
A major question is, again, the trigger
- Local data reduction is not viable below 20 cm
- Regional readout is probably the way to go, if needed
A major question is, again, the trigger
- Local data reduction is not viable below 20 cm
- Regional readout is probably the way to go, if needed
Phase 2 pixel

A major question is, again, the trigger
- Local data reduction is not viable below 20 cm
- Regional readout is probably the way to go, if needed

Would provide precise PV determination @ Level-1
- From < 1 mm with outer tracker to < 100 µm with pixels
- But it’s just a cartoon for the time being…!
 - Is the latency enough?!?
Summary and outlook

- Designing an Outer Tracker with:
 - Higher granularity
 - Enhanced radiation hardness
 - Improved tracking performance (i.e. lighter!)
 - L1 Track finding capability
 - Reconstruct tracks above ~ 2.5 GeV
 - With ~ 1mm z_0 resolution

- All the necessary R&D activities are ongoing

- Still far from a fully defined concept
 - But a lot of progress has been made already
 - Encouraging indications that the goals could be met
 - Need to converge on an optimal design in the next ~ 2 years

- Draft schedule developed for delivery in LS3

- Phase 2 pixel project on the starting blocks
 - Development plan for the next 5 years being defined

- A lot of interesting and creative work: newcomers most welcome!
Backup
Layout properties

Barrel layers: 10, 6
Endcap layers: 9, 7
Number of fibers: ~41 k, ~34 k

Geometry optimized for tracking: end-cap modules, no double-stacks, ...
Less layers to reduce material (improves p_T resolution at low p)
Layout properties

<table>
<thead>
<tr>
<th></th>
<th>CMS</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrel layers</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Endcap layers</td>
<td>9</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of fibers</td>
<td>~ 41 k</td>
<td>~ 35 k*</td>
</tr>
</tbody>
</table>

Geometry optimized for track-trigger: long barrel, double-stacks, ...
All pixellated modules (modelled as twice a PS module)
* Assuming one GBT/module of 10x10 in the first layers
Surface, power, weight, ...

Surface [m²]
- CMS
- A
- B

Weight [kg]
- A
- B

FE Power [kW]
- CMS
- A
- B

Options
- **A:**
 - 1 front-end
 - + 1 correlator
 - 10 x 5 cm²
 - + 1 DC/DC
 - + 1 GBT
 - 1.5 mm long pixels
- **B:**
 - 2 front-end
 - + 2 DC/DC
 - + 1 correlator
 - 10 x 10 cm²
 - + 1 GBT
 - 1 mm long pixels

June 8, 2012