

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut Bernd Schmitt

X-ray Detector Development at the Swiss Light Source

PAUL SCHERRER INSTITUT (2011)

~1500 Staff employees; 30Km from Zurich, task in ETH domain: run large scale facilities

X-ray Detector Development at SLS

Outline

Detector principles:

- hybrid detectors
- single photon counting
- charge integrating

Single Photon counting: Mythen, Eiger

Charge integrating: Gotthard, Swissfel

Detector research: What are the limits in pixels size? How can one reach the highest position resolution?

Hybrid Silicon Detectors

Charge for 12keV=3300 electrons = 0.5 fC

PILATUS

MYTHEN

EIGER

... to charge integrating detectors for the E-XFEL

Preamplifier with gain switching

- Logic after comparator to:
 - Switch a 2nd time if 1st switch not enough
 - Avoid a 2nd switch on spikes due to the 1st one
- Switching has to be FAST (<10ns)

Single photon counting detectors: Mythen, Eiger

+1 +1 +1.....

MythenII at the Powder Diffraction Station

- Full 120° PD spectrum in <1s, typically 0.1s
- Intrinsic angular resolution 0.004° (0.01°)
- Energy range: 5-40 keV (at SLS PD)
- Main applications:
 - Time resolved, in Situ measurements
 - Temperature scans
 - Organic Materials (reduces radiation damage dramatically)

Standard powder samples

03-12-2008

75.2968

The data quality allows structural solution and refinement! Measurement several orders of magnitudes faster!

Bernd Schmitt , PSI 5/7/2012

Single photon counting hybrid pixel detectors for synchrotron applications are aimed towards diffraction experiments

- Applications at CSAXs:
 - Scanning Coherent Small Angle X-ray Scattering
 - Coherent Diffractive Imaging
 - X-ray Photon Correlation Spectroscopy
- Protein Crystallography

PILATUS 2M

Protein Crystallography

- Single photon counting pixel detector
- Sensitive area of 38 X 77 mm²
- 524k pixel module
 - 2 x 4 chip array
- Dead time free mode of operation
- Maximum frame rates
 - 23 kHz in 4 bit mode
 - 12 kHz in 8 bit mode
 - 8 kHz in 12 bit mode
- Maximum data rates on the readout boards
 - 25 Gb/s for a half module
 - 50 Gb/s for a module
- On board in hardware data processing
- 8 GB of memory on a module
- Two 10 GbE data links per module

Side view

Half module image

UMC 0.25 μ m Technology, full radiation tolerant layout

EIGER main features

		In red:	
Technological process	UMC 0.25 μm	Improvement factor with respect to PILATUS	
Radiation tolerance	Full radiation tolerant design (>4Mrad)		
Chip size	19.3 x 20.1 mm ² (active 19.2x19.2mm ²) > 2 x		
Pixel size	75 x 75 μm ² = / 5.3		
Pixel per chip	256 x 256 = 65536 = 11.3 x		
Counter	12 bits, binary, configurable (4,8,12 bit mode), double buffered		
Count rate	3.4 x 10 ⁹ x-rays/mm ² /s = 5.3 x		
Dead time free readout	yes		
Detector readout speed	~12 KHz @ 8 bit mode (Detector size doesn't matter) = up to ~2000 x (Clock=100 MHz DDR)		
Threshold adjustment	6 bit DAC		

1

EIGER high frame rate Demo

$$V = 50KV, I = 0.4mA$$

$$V = 50KV, I = 1 mA$$

Chip in 12 bit Mode Exposure time 125µs Dead time 3µs Frame rate 7.8 kHz

Chip in 8 bit Mode Exposure time 85µs Dead time 3µs Frame rate 11.4 kHz Chip in 4 bit Mode Exposure time 45µs Dead time 3µs Frame rate 20.8 kHz

Energy calibration and definition of settings

Noise

□ Noise distributions: monochromatic beam at the Beam line

Trimming

Trimming: XRay tube and Fluorescence screens (Cu Screen 8KeV)
 Threshold scans: Standard Mode of operation

Rate capability

---- Very first curves: no fit, no errors ! ---- 3 gains per Energy (4 @ 20keV) Vcmp @ 1/2 E

	Number of pixels	On board storage (frames/4 bits)	Data rate ¹ @ 12 kHz	Data rate ² @ 1kH	Data rate ³ @ 100 Hz	Data rate ⁴ @ 10 Hz
Module	524 k (512 x 1024)	~32,740	50.3 Gb/s	6.29 Gb/s*	839 Mb/s*	168 Mb/s*
9M Detector	9.44 M (3072x3072)	~32,740	906 Gb/s	113 Gb/s	15.1 Gb/s [*]	3.02 Gb/s*

Data buffering

Image summation

Series averaging

Rebinning

- On board data processing is in parallel on multi-module systems
 - independent of the detector size
 - reduces a modules tens of Gb/s at the source
 - or a 9Ms, hundreds of Gb/s at the source
- Data buffering
 - on board memory for 32 k frames per 4 counter bits Image summation
 - extends the dynamic range from 4096 to 4x10⁹
 - ~1 k sub image frame rate (4 M counts/pixel/s)
 - transparent to the user
 - makes high flux continuous data taking possible
 - reduces the quantity of data at the source
- Rate correction
 - performed on sub-frames @ kHz frame rate
 - more precise, less sensitive to rate fluctuation
 - real-time processing
 - Pump and probe series averaging
 - high frame rate exposure series summing
 - alternating pumped and un-pumped
 - no data transfer dead time between series
 - huge reduction of the quantity of data at the source
- Data reduction
 - 2x2 pixel rebinning
 - SAXS ring intensity averaging (planned)
 - data compression (in thought, question of HDF5 compatibility)

Charge integrating systems

+1 +1000 +100.....

GOTTHARD:

Gain Optimizing microsTrip sysTem witH Analog ReaDout

- designed in 2004 in UMC0.25 μm technology
- 100 channels
- 4 gain stages with automatic gain switching
- double sample and hold circuit to perform offline CDS

Prototypes (2008-2010)

GOTTHARD 1.0

- + 6.3x1.4mm² 128 channels 50 μm pitch
- 3 automatic gain stages + 1 High Gain mode
- fast off pixel buffers, to sustain 32MHz readout
- 4 diff. analog outputs, 8 digital (gain) outputs
- ~ 1mW/ch.

floorplan of Gotthard1.0	
a (an an a	and bendered bender beide bei beste bes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Noise – very high gain mode

- measured with X-ray tube and Ag fluorescence (22 keV)
- ~ 1 us integration time

Noise ~ 160 e.n.c.

- single photon resolution down to ~3.5 keV
- At lower energy 2 or more γs can still be separated from the noise floor
- Sensors with thin "entrance window" needed

Noise – dynamic gain switching

- Gain1 is the starting gain for the switching mode
- measured with Cu fluorescence (8 keV)
- Average noise is 260 e.n.c.
- SNR=13 (for a 12 keV photon signal)
- Gain1 total range ~ 80 ph.

Noise – many photons

- an integration time scan at constant input current (visible light) was used to evaluate the noise at low gains
- CDS increases the noise of gain 2 and 3: a circuit to disable CDS after switch is present
- at all gains the electronic noise is well below the Poisson level
- Dynamic range of 10⁴ ph.

PAUL SCHERRER INSTITUT

Linearity

- linearity errors within +- 0.5% (source effects included) in the design input range (0-10⁴ ph.)
- On smaller ranges better linearity can be achieved

- ps laser setup UNI HH
- delay scan with a high intensity laser pulse
 (~500 12keV photons)
- 200ns integration time
- CDS output settles in <30ns
- integration times as small as 80-50ns can

be used

- similar result (in terms of speed) with or without automatic gain switching
- the preamplifier+switching circuitry can work at E-XFEL rates (4.5MHz)

Linearity for XFEL-like pulses

- Measured with Gotthard0.3 prototype
- The switching has been tested with a sub-nanosecond laser pulse hitting the strip sensor
- Integration time 200ns, pulse in the middle of it
- Point dispersion mainly due to the uncertainty on the laser attenuation filters
- Switching works at the required speed

GOTTHARD module: overview

- 67mm x 130mm
- 50 µm pitch, 1280ch/module (same as MYTHEN)
- 10 chips, 4 analog outputs per chip
- 40 ADC channels @50Mhz,14bits
- Gbit Ethernet data transfer for readout
- 100T Ethernet for slow control/setup
- Fast readout (1MHz) with ~600 bunches per E-

XFEL train measurable (memory for ~350)

- 60kHz continuous frame rate
- Integration in Mythen software (detector class)

	Specifications
module size	6.7x13 cm
sensitive area	64x10mm
sensor thickness	320-500 μm
pitch	50 μm
dynamic range	10 ⁴ 12keV photons
min Energy	<3.5 keV
linearity	better than 0.5%
point spread function	O(pitch)
min int. time	80ns
dead time	<50ns
cooling	air (fan)
readout time = 1 /	>50kHz continuos
frame rate	1MHz burst
XFEL ready	YES

adJUstiNg Gain detector FoR the Aramis User station

- ASIC and readout system based on GOTTHARD
- Dimensions, sensor and mechanics from EIGER
- chip 2013, module 2014, detector mid 2015

ASIC technology	UMC110nm
mudule pixel count	525k
mudule size	80x40 mm ²
sensor thickness	320-500 μm
pixel size	75x75 mm ²
dynamic range	up to 104 12keV photons
noise r.m.s.	<150 e.n.c.
min Energy	<3 keV
linearity	better than 1%
point spread function	1 pixel
dead time	<50ns
cooling	liquid
readout time = 1 / frame rate	400Hz

EIGER 4M detector mechanics – 4x2 modules

What are the limits for the pixel size and position resolution?

How can one achieve the highest resolution?

Single photon counting detectors at small pitches

single photon counting possible down to about 25 μm below 25 μm charge summation necessary the region where the charge is shared is approximately constant

50 micron pitch, 25 keV

Gotthard: position interpolation

Eta algorithm for position reconstruction:

- $\eta = Q_R / (Q_L + Q_R)$
- eta distribution N(η) are collected for a uniform photon field
- the hit position is then:

$$x_{\eta} = p \frac{\int_{0}^{\eta_{0}} \frac{dN}{d\eta} d\eta}{\int_{0}^{1} \frac{dN}{d\eta} d\eta}$$

Gotthard: position interpolation III

• Strip pitch 20µm, 15keV beam

Sample 3µm thick gold on 300 µm Si substrate → little contrast!

- First results
 - characterization of the chip
 - the first demonstration experiments
 - Currently work on firmware and software, soon module working
- Single module system @ cSAXS, surface diffraction station
 - summer this year
- High performance 9M Eiger @ cSAXS
 - on board memory (288 GB RAM) or 2.5 sec @ highest data rates
 - 100 Hz continuous operation and data to disk
 - Complex IT infrastructure and data storage needed
- Eiger licensed to Dectris

- Dynamic gain switching works well
 - Single photon resolution and 10⁴ dynamic range
 - Electronic noise below poisson fluctuations
 - single photon counting data quality
- Gotthard works at 1MHz frame rate in burst and 50kHz continous
 - Well suited for diagnostics of XFELs and energy dispersive detectors
- Swissfel detector development just started (almost everything in hand) ready 2015
 - Based on Eiger sensor 75 micron pixel size
 - Frame rate up to 2kHz well suited for PX (no rate limitation)
- Charge integrating system can have similarly low noise as single photon counting systems
 - No limit in pixel size due to charge sharing position resolution on ~micron level can be reached

The SLS Detector Group: Anna Bergamaschi, Roberto Dinapoli, Beat Henrich, Dominic Greiffenberg, Ian Johnson, Dhanya Maliakal, Aldo Mozzanica, Christian Ruder, Lukas Schädler, Bernd Schmitt, Xintian Shi

Wir schaffen Wissen – heute für morgen

