Digital Photo-Multipliers: Design and Applications

E. Charbon

DESY, April 13, 2012

Why Photon Counting?

- Applications requiring PC
 - HEP experiments
 - Biomedical imaging
 - Neurobiology research
 - Astronomy and astrophysics observation
- Multiple detection points
 - Typically thousands
 - Possibly 100,000 or more in the near future

Photon Counters of the Future

- Solid state
- Low cost
- Low power
- Small detection cycle
- Compact

... Small design cycle!!

What About...

- Time resolution (Δt)
- Photon Detection Efficiency (PDE)
- Δt should be *enough*
- PDE should be, possibly, 100%

A Case for Photon Counters Positron Emission Tomography

Coincidence Detection

- Photomultiplier tubes (still heavily used)
- Emerging technology: silicon photomultiplier (SiPM) or simply *PM*
- SiPMs essentially *Geiger-mode avalanche photodiode* arrays

Outline

- SiPM Building Block: GAPD or SPAD
- Analog vs. Digital SiPM
- An md-SiPM based Sensor
- The Next Big Challenges
- Conclusions

Geiger-mode Avalanche Photodiode

Also known as: Single-Photon Avalanche Photodiode (SPAD)

Multiplication in Silicon

<u>Review</u>:

Photon to electron - Secondary electron - Multiplication Multiplication in depletion region by *impact ionization*

Linear (or Proportional) Mode

Geiger Mode (SPAD)

Under the Hood of a SPAD

- Seeding
- Build-up
- Spreading
- Quenching
- Recharge

Avalanche Phases

14

Spreading from Multiple Locations

Quenching

P⁺-N Junction

SPAD Implementation

- p- guard ring for electric field reduction in edges
- Prevention of premature edge breakdown
- Creation of zone with constant electric field

SPAD in CMOS

Passive quenching technique

SPAD Non-Idealities

- Dead time
- Dark counts
- Photon detection probability (PDP)
- Timing resolution
- <u>Afterpulsing</u>
- ... and in SPAD matrices
- Cross-talk
- PDP Uniformity

Dark Counts: Dark Count Rate

<u>Mechanisms</u>:

Band-to-band tunneling generationTrap-assisted thermal generationTrap/tunneling assisted generation

- State-of-the-art SPADs in dedicated technology: 0.04~1Hz/µm²
- State-of-the-art CMOS SPADs:

1~10Hz/µm²

DCR Characterization

- Due to statistical behavior we use:
 - Mean
 - Median
 - Cumulative
- Proportionalities
 - Linear (active area)
 - Non-linear (excess bias voltage, temperature)

Photon Detection Probability (PDP)

Photon Detection Efficiency

$PDE = FF \cdot PDP$

where

FF : fill factor = $\frac{\text{Active Area}}{\text{Total Sensor Area}}$

Timing Resolution

25

Afterpulsing

Analog vs. Digital SiPM

Two Flavors of SiPMs

- Analog silicon photo-multiplier (a-SiPM)
- Digital silicon photo-multiplier (d-SiPM)

a-SiPMs

- Cannot remove noisy SPADs
- Relative slow rise time due to loading (if no differentiation/delay techniques are used)

d-SiPMs

- No energy estimation
- Only first photon detected

Energy Estimation

Good estimate of energy = Mitigation of the effects of Compton and Scattering effects

Solving Shortcomings of d-SiPM

First photon issue

1st or 2nd or 3rd or 4th photon detected

In Summary

a-SiPM

+Simple, High FF (~100%), thus high PDE

- Sensitivity to threshold, rel. slow rise time

Modified d-SiPM

+Fast rise time

+Can remove noisy SPADs

+Robust to thermal noise

- -Lower FF (77%, Frach et al. NSS2011)
- Only first n=4 photons individually detected

Introducing: md-SiPMs

- Pros:
 - Independent detection of n >>4 photons
 - Integrated time-to-digital converters (TDCs)

Why Detect Many Photons Individually?

- 1st reason
 - If a Compton or scattering photon or dark count is detected before the Gamma event, it does not block the whole SiPM
 - A posteriori snooping can remove spurious events
- 2nd reason (and even more important)
 We get much better statistics of the Gamma

event

Rationale – Statistics

- Assume standard model of scintillator response at time Θ $\frac{1}{\tau_d - \tau_r} \left[e^{-\frac{t - \Theta}{\tau_d}} - e^{-\frac{t - \Theta}{\tau_r}} \right]$
- Then, a lowerbound on the variance of the estimator exists that satisfies Cramér-Rao's inequality
- The uncertainty of the estimator is lower if the previous *n*-1 measurements are taken into account vs. only the *n*th order statistic

Rationale – Statistics(2)

8

Rationale – Statistics(3)

 A a-SiPM exhibits a coincidence resolving time (CRT) following the <u>same</u> behavior

Rationale – Statistics(4)

- A a-SiPM will achieve the lowerbound of CRT but <u>only</u> at a given threshold that is often unknown a priori and somewhat unstable
- A md-SiPM will guarantee to <u>always</u> find that lowerbound provided a sufficient number n is used
- PROVIDED that

The number of photons is not reduced significantly, i.e. the FF is not drastically lower!

An md-SiPM Based Sensor

Positron Emission Tomography

Source: Sun

The EndoTOFPET-US Project

- Asymmetrical PET
 - Endoscope (intra-orifice detection)
 - Belt (external detection)
- Adjacency improves resolution

Endoscope Sensor

Parameter	EndoTOFPET-US
Number of "Pixels"	See Upcoming Publications
" Pixel" Pitch (μm)	800
Max. PDE (%)	See Upcoming Publications
Max. Fill Factor (%)	>40
# of First Photons Detected	See Upcoming Publications
Timing resolution or LSB (ps)	<100
Max. Conv. rate (MS/s)	See Upcoming Publications

Solution

Sensor Floorplan

Sensor Architecture Highlights

- Careful balance FF vs. functionality
 - Column-parallel TDCs
 - Noisy SPAD suppression
 - Optical concentrators
- Smart reset mechanism
- Column-parallel TDCs

Smart SPAD

- Noisy SPAD suppression ('masking')
- Internal counter (for energy determination)
- Fast & accurate photon pulse shaping
- Low power
- High FF

Pixel DCR with Masking

Masking vs. Fill Factor

- Masking reduces FF by the same amount
- Example

5% masking reduces FF by 5% 20% masking reduces FF by 20%

Masking vs. PDE

DCR [Hz]

Sensor Floorplan

Time-to-Digital Converter (TDC)

LSB Uniformity, Equivalent TDC

a-SiPM vs. d-SiPM: the Myths

- a-SiPMs are simpler to build
- a-SiPMs have a better fill factor
- a-SiPMs have better sensitivity

* * *

- d-SiPMs have better rise time
- d-SiPMs have better noise performance
- d-SiPMs are more versatile

True or False ?

md-SiPM?

 Like a d-SiPM but much more powerful and robust!

Hostile Environments

- Gamma radiation
- B-fields
- Proton irradiation
- High temperatures

Radhardness

Charbon, Carrara et al., 2010

B-Fields

 Timing resolution insensitive due to dominating avalanche force over Lorentz forces

The Next Big Challenges

Moore's Law for SPADs

Fill Factor

Guard rings, design rules, on-pixel processing

The SPADnet Project

Objective:

Fully digital, scalable *photonic component* capable of detecting single and multi-photon bursts, their time-of-arrival and intensity

Important Trends

- Sub-90nm CMOS
- 3D integration
- Backside illumination (BSI)
- Near IR
- Near and deep UV
- Soft and hard X-ray
- Larger formats

Sammak, Aminian, Nanver, Charbon, IEDM11

Conclusions

- Photon-counting imagers are here to stay
- New and old apps enabled
- Next challenges
 - More miniaturization
 - More parallelization
 - More flexibility
 - Novel imaging paradigms

Acknowledgements

Swiss National Science Foundation FP6 and FP7 Programs

http://cas.et.tudelft.nl

