Reflective Hard X-ray Optics: Recent Developments for Astrophysics and Free Electron Lasers

Joint Instrumentation Seminar

5 August 2011

Michael Pivovaroff, PhD Group Leader, X-ray Science & Technology

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

UCRL-PRES-493774

Acknowledgements

<u>LLNL</u>

Jennifer Alameda

Sherry Baker

Anton Barty *

Richard Bionta

Dionte

Bill Craig

Todd Decker

Monica Fernandez-Perea <u>LLNL</u>

Stefan Hau-Riege Tom McCarville

Donn McMahon

Paul Mirkarimi

Jeff Robinson Regina Soufli Julia Vogel Chris Walton DTU-Space Finn Christensen Nicolai Brejnholt Carsten Cooper-Jensen* Anders Jakobsen

> Jacek Krzywinski Peter Stefan

* Moved institutions

<u>Columbia U.</u>

Charles Hailey

Jason Koglin

<u>Caltech</u>

Fiona Harrison

Kristin Madsen

Peter Mao

ORNL Klaus Ziock

NASA GSFC Will Zhang

Pivovaroff : 03 August 2011

X-RAY OPTICS PRIMER

X-ray optics can use a wide range of phenomena

Diffraction

- Gratings
- Fresnel zone plates

A Snigirev et al. *Nature*, **384**, 49, (1996)

Refraction

Compound refractive lens

Reflection

- Capillary optics
- Mirrors Today's seminar

Absorption

- Pinholes
- Anger cameras
- Coded apertures

KP Ziock et al. Proc IEEE NSS, (2003)

Reflective x-ray optics

- Compton first discovered X-rays incident at small glancing angles are totally reflected
 - "The Total Reflexion of X-rays", *Philosophical Magazine*, **45**, 1121, (1923)
- Index of refraction for high energy photons $n = 1 \delta i\beta$
- Total external reflection of light occurs when the incident angle is less than the critical angle $\theta_{\rm C} = \sqrt{2\delta}$.
- Critical angle drops rapidly with energy $\theta_c \sim E^{-1}$.

Original reflective x-ray optic concepts

"Formation of Optical Images by X-rays" P Kirkpatrick, AV Baez J Opt Soc Amer, 38, 766, (1948)

"Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen" H Wolter, *Phys Ann* 10, 94, (1952)

FIG. 11. Arrangement of concave mirrors to produce real images of extended objects with incidence at small grazing angles.

- Two (or more) concave, spherical mirrors
- Does not meet the Abbe sine rule

- Even number of conic surfaces of revolutions (hyperbola+parabola, hyperbola+ellipse, etc.)
- Nearly satisfies Abbe sine rule
- Significant increase in solid angle (compared to KB)

Wolter optics for x-ray astronomy

- Wolter originally proposed his designs for an x-ray microscope for biology
 - Not possible to fabricate
- Idea later adopted by Giacconi *et al.* for astronomy

 Key innovation was the realization that mirrors could be nested inside one another to increase collecting area (solid angle)

X-ray reflectivity

Limited to materials that:

- can be polished well or deposited smoothly (*e.g.*, Ni, Rh, Au, Ir)
- do not have absorption edges in operational band

 Reflectivity depends not only on material, but also its highspatial frequency roughness (*i.e.*, finish)

X-ray multilayers

- At high energies, graze angles (θ_c) become too shallow for efficient optics: switch to multilayers
- Alternating layers of high- and low-Z materials act as reflecting interfaces, following Bragg's law

$$m\lambda = 2d\sin\theta \sqrt{1 - \frac{2\overline{\delta}}{\sin^2\theta}}.$$

- Theory described in 1920s-1930s
- First proposed for X-ray applications in early 1970s by Spiller *et al.*
- Initially, constant-d designs used for high reflectivity for particular bands

Later, Christensen *et al.* proposed [*Proc SPIE*, **1736**, 229, (1992)] varying *d*, to satisfy the Bragg equation over a range of *θ* and *λ*(~1/E) at high energies.

Multilayer performance

- Recipes can be tuned for application; tremendous versatility
- Systems can consist of 1000's of bilayers to just a few layers ("overcoatings")
- Practically, limited by absorption, stress, absorption, material properties and other constraints (cost, time)

- Semi-infinite Pt coating with $\sigma=3\text{\AA}$
- Constant-d: Pt/SiC, σ=3.0Å, N=90, d=35Å Γ=0.56
- Graded-d: Pt/SiC, σ=4.5 Å, N=566

How high can you go in energy?

- Several groups have published reflectance measurements from multilayers above 100 keV
 - Windt et al; Jensen et al;
 - High reflectivity reported; some discrepancies between measurements and theoretical values
- We have recently fabricated WC/SiC multilayers with periods of 10-20 Å and N = 300-500 and tested them at NSLS at 186 keV
 - Excellent agreement between model and data

LLNL-PRES-493774

Pivovaroff : 03 August 2011

NUSTAR

Hard x-ray astrophysics

 Want to make observations above ~10 keV where traditional x-ray mirrors (i.e. those coated with a simple metal reflective layer) lose effectiveness

Relativistic jets

- Why?
 - Nucleosynthesis: observe young supernova remnants like Cas A
 - Black hole surveys
 - Extragalactic science (e.g, blazars)
 - Compact objects (e.g., neutron stars)

LLNL-PRES-493774

Moving from the soft x-ray band ...

XMM-Newton; ESA

- 15" HPD
- 3 telescopes, 58 nested shells
- 120 m² surface area
- Mirrors: 200M DM (\$120M US)
- Total: \$700MUS
- Replicated from precision mandrels

Chandra; NASA

- 0.5" HPD
- 1 telescope, 4 nested shells
- 10 m² surface area
- Mirrors: \$700M US
- Total:\$1600M US
- Polished monolithic blanks

XMM telescope View </t

Chandra Zerodur substrate

NuSTAR requires large area above 10 keV How do we do it within a SMEX program?

... into the hard x-ray band with NuSTAR

XMM-Newton; ESA

- 15" HPD
- 3 telescopes, 58 nested shells
- 120 m² surface area
- Mirrors: 200M DM (\$120M US)
- Total: \$700MUS
- Replicated from precision mandrels

<u>Chandra; NASA</u>

- 0.5" HPD
- 1 telescope, 4 nested shells
- 10 m² surface area
- Mirrors: \$700M US
- Total:\$1600M US
- Polished monolithic C blanks

<u>NuSTAR</u>

- 45" HPD goal
- 2 telescopes, 130 nested shells
- 80 m² surface area
- Mirrors: \$10–15M US
- Total: \$100M US
- Thermally-formed, multilayer-coated mirrors

Solution: glass substrates

- Work dates back as far as 1988
 - Labov, *Applied Optics*, **27**, 1465, (1988).
- Columbia/DTU/LLNL starts in earnest in late 1990's for the High Energy Focusing Telescope (HEFT) balloon mission
- Start with flat panel float glass (Schott and Corning) which has nice thickness uniformity and excellent surface finish (roughness σ = few Å)
- Thermally form ("slump") into near net shape
 - Take flat pieces of glass and turn into cylindrical shapes
- Coat with appropriate reflective coatings
- Assemble into an optic

Optics assembly procedure

- Epoxy graphite spacers onto a mandrel and machined to the correct radius & angle (#1)
- Epoxy ML-coated substrates to spacers (#2)
- After epoxy cures, epoxy next layer of spacers to previous layer of glass (#3)
- Machine these spacers, epoxy another layer of glass into place (#4)
- Repeat until entire optic is assembled

LLNL-PRES-493774

Pivovaroff : 03 August 2011

J.E. Koglin *et a*l., *Proc. SPIE*, **4851**, 607, (2003)

HEFT optics

J.E. Koglin *et al., Proc SPIE,* **5168,** 100, (2004) J.E. Koglin *et al., Proceedings of The X-ray Universe* 2005, 955, (2006)

 Three optics built during ~2 year fabrication cycle (4400 mirror segments)

Caltech, Columbia, DSRI (DNSC) & LLNL

- In flight performance: 60–80" HPD
- Prototype resolution: 43" HPD
- HEFT flight module (72 layers)

HEFT ready for launch (summer 2005) New Mexico

F.A. Harrison *et al.*, *Experimental Astronomy*, **20**, 131, (2005)

NuSTAR (Nuclear Spectroscopic Telescope Array)

- NuSTAR starts in 2004 (PI Fiona Harrison, Caltech)
 - Leverages HEFT technology development
- NASA SMEX mission (\$100M, not including launch); launch scheduled for 3 Feb 2012
- First focusing x-ray optics above 10 keV
 - order of magnitude more sensitivity than previous missions
 - CdZnTe focal plane array for extremely good spectroscopy (ΔE < 1 keV)

LLNL-PRES-493774

Pivovaroff : 03 August 2011

Optics start with thermally forming substrates

- Optics PI, Charles Hailey, Columbia University
- Team includes: Columbia U., DTU-Space, NASA GSFC, LLNL

Substrate forming in oven

- GSFC approach slumps glass directly onto highly polished mandrels
- Excellent figure (10–20" HPD) has been demonstrated

Depth-graded multilayer coatings provide broad band response High throughput

- Two material systems used, driven by need to detect Ti-44 lines at 68 & 78 keV
 - Pt/C provides highest response
 - W/Si less expensive and smoother
- 10 different multilayer recipes used
- X-ray testing to optimize coatings and understand performance
 - 8 keV (DTU)
 - 60 keV (NSLS)
 - 🔹 10-90 keV (RaMCaF)
- Extensive metrology to validate models
 - Surface roughness, TEM compositional studies

High throughput magnetron sputtering chamber

Danish Technical University-Space Coating Facility

F Christensen et al., Proc SPIE, 8147, (2011)

Pivovaroff : 03 August 2011

LLNL-PRES-493774

С

22

NuSTAR telescopes assembled at the Nevis Laboratories, Columbia University

Two custom-built assembly machines are used to precisely mount the glass segments at Columbia's Nevis Laboratory

> J Koglin *et al., Proc SPIE*, **8147,** (2011) W Craig *et al., Proc SPIE*, **8147,** (2011)

Glass is positioned and clamped for overnight cure of epoxy

Optic with more than 100 layers

NuSTAR telescope details

Focal Length	10.15 m						
Shell Radii	51–191 mm						
Graze Angles	0.074–0.224°						
Shell Length	225 mm						
Mirror Thickness	0.2 mm	Solida					
Shells Per Module	130						
Mirror Segments Per Module	2340						
C Hailey et al. Proc SPIE ,7732, (2010)							
Cover Cover Cover Spacers							
structure J Koglin et a W Craig et a	I., Proc SPIE, 8147, (2 I., Proc SPIE, 8147, (2	2011)					

Pivovaroff : 03 August 2011 LLN

LCLS X-RAY OFFSET MIRRORS

LLNL-PRES-493774

Linac Coherent Light Source (LCLS) at SLAC

From the undulator hall to the users

- FEL (o.8-8 keV, 1st harmonic) comes with high-energy bremsstrahlung (spontaneous) emission that is both dangerous and contaminating
- To eliminate its presence, use a series of mirrors to filter out unwanted component, as well as deliver beam to different end stations

Parameter	0.827 keV	8.27 keV
FEL pulse (rms)	137 fs	73 fs
FEL width (FWHM)	81 μm	60 µm
FEL divergence (FWHM)	8.1 μrad	1.1 μrad
FEL brightness [γ s ⁻¹ mm ⁻² mrad ⁻² (0.1% bw) ⁻¹]	0.28×10 ³²	15×10 ³²
Avg FEL power	0.23 W	0.23 W
Avg Spontaneous power	0.24 W	2.2 W

Science driver: safely transport beam to End Stations with minimal loss of coherence or intensity and no damage to optics

Solution: X-ray mirrors made by depositing thin films on very smooth, very flat precision-fabricated silicon substrates

Damage considerations

- Consider doses for:
 - thermal fatigue (D₃), reaching melt (D₂), melting (D₁)
 - D₁ > D₂ > D₃
- Experiments at FLASH show damage occurs for D₁-D₂
- Vertical bands indicate where materials will become damaged
 - Must place elements made from materials to the right of the bands to prevent damage

Very few materials will survive the fully saturated FEL!

Manufacturing approach for LCLS X-ray mirrors

For SOMS (0.8-2.0 keV): B₄C

- Polish/figure B₄C monolithic mirror: infeasible
- Procure Si substrate from commercial vendor, deposit 50nm thick B₄C reflective coating at LLNL

For HOMS (2-25 keV): SiC

- Polish/figure SiC monolithic mirror: very challenging
- Procure Si substrate from commercial vendor, deposit 50nm thick SiC reflective coating at LLNL
- For both systems, ensure coatings, mounting and pointing do not degrade substrate quality

Layout of mirror systems

SOMS: Soft X-ray offset mirror system

- Three reflection design to maximize horizontal deflections
- Creates two lines in Near Experimental Hall (NEH)
- Translate last pair of mirrors to select line

HOMS: Hard X-ray offset mirror system

- Periscope design, 30 mm horizontal offset
- Withdraw first SOMS mirror to send hard beam to Fall Experimental Hall (FEH)

Summary of LCLS x-ray mirror specifications

Guiding design philosophy

- Maximize throughput (high reflectivity, sufficiently long mirrors)
- Limit increase in beam size
- Minimize wave-front distortions
- Balance against state of the art vendor capabilities

Balance requirements against manufacturability

- Start with metrology data from recent mirrors delivered to SSRL; iterate with potential vendors to explore possibility for improvements
- Use formalism developed by Church & Takacs (and others)

Err	or Category	Specification	Spatial Wavelength	
Figuro	Height Error	≤ 2.0 nm rms [‡]	1 mm to Close Aporturat	
Figure	Slope Error	\leq 0.25 μ rad rms [‡]	I min to Clear Aperture	
Mid-Spatial Roughness		≤ 0.25 nm rms	2 µm to 1 mm	
High-Sp	atial Roughness	≤ 0.4 nm rms	20 nm to 2 µm	

* SOMS mirrors:Flat, planar,250×30×50 mm³, Clear Aperture = 175×10 mm²* HOMS mirrors:Pseudo-planar**, 450×30×50 mm³, Clear Aperture = 385×15 mm²**Substrate ground curved, and then bent flat*limited by manufacturers' capabilitiesM. Pivovaroff *et al., Proc SPIE*, **6705**, (2007)

Pivovaroff : 03 August 2011 LLNL-PRES-493774

Reflective coating requirements for LCLS X-ray mirrors

• <u>Figure</u>: Coating should preserve the substrate figure specification of 0.25 μ rad rms & 2 nm rms $\sigma_{total}^2 = \sigma_{sub}^2 + \sigma_{film}^2$

→ Coating is allowed to contribute < 1 nm rms figure error across clear aperture (175×10 mm² for SOMS, 385×5 mm² for HOMS)

- <u>Roughness</u>: Coating should have low HSFR (will inherently replicate MSFR)
- <u>Stress</u>: Coating should have low stress (< 1GPa for ~50 nm coating thickness), to prevent figure deformation or delamination from Si substrate
- <u>Lifetime stability</u>: Coating should be stable over time in ambient conditions, and under the operating conditions of LCLS X-ray mirror system

"Mag 4" magnetron sputtering tool can accommodate 450 mm long substrates

Underneath view of LLNL chamber lid with 5 sputtering targets

Boron carbide thin film development for LCLS SOMS mirrors

SOMS and HOMS coating thickness uniformity is well within 1 nm rms specification

R. Soufli et al., Proc SPIE, **7077**, (2008)

- B₄C measured thickness variation: < 0.4 nm P-V, < 0.14 nm rms (< 0.28% rms) across the 175-mm SOMS clear aperture
- SiC measured thickness variation: < 1 nm P-V, < 0.34 nm rms (< 0.7 % rms) across the 385-mm HOMS clear aperture

HOMS and SOMS engineering challenges

- Pointing
 - Facility requirement of less than 10% increase in spot size
 - SOMS < 900 nrad
 - HOMS < 90 nrad
- Flatness requirements
 - Ideally, better than 1 nm rms height errors for coherence preservation
 - High-stress coatings will impart spherical curvature—manufacturer with concave bend to compensate
 - Ensure bending can remove spherical curvature induced by coatings
 - Design a mounting system that imparts minimal change to mirror
- Design for thermal and vibrational stability

The mirror & mount are designed to meet figure-error budget

To limit intensity ellipticity to 10%

Requirement	(sphere)	ere) Figure error budget (sphere), nm				
	Peak to			Coating		
Direction	Valley, nm	Mounting	Thermal	stress	Gravity	Fabrication
HOMS/SOMS						
Sagittal	< 5	<< 1			<1	
SOMS						
Tangential	<20	<1	<1.5	<4	<-1	<10
номѕ						
Tangential	<9	<1.5	<1.5	<12	<-1	<20

Finite element analysis guided optimization of the mirror and mount design (HOMS case is plotted); Analysis was benchmarked to measurements

Coated SOMS measured every 2 min for 48 hr 12"-aperture interferometer calibrated with 3-flat test

HOMS and SOMS installation and alignment at LCLS

- Mounting employs flexures
- Adjust, based on *in situ* fullaperture interferometry
- HOMS figure can be remotely controlled
- Good design controls vibrational jitter < 10 nrad

- \bullet Thermal stability for rotation/translation is 70/300 nrad/0.1° C
- T-controlled enclosure demonstrates \pm 0.01 °C temperature and \pm 30 nrad HOMS stability

HOMS #1 figure coated and installed on mount

Pivovaroff : 03 August 2011

HOMS #2 figure coated and installed on mount

Pivovaroff : 03 August 2011

SOMS & HOMS performance predictions

- LLNL metrology data, coupled into coherent wavefront propagation code, used to predict HOMS & SOMS focal spot structure
 - Scalar diffraction model was employed
 - Same methodology to select order of SOMS and HOMS elements for optimum performance

FUTURE TRENDS

X-ray astronomy

ESA (and NASA?) pursuing large missions

- ESA now pursuing L-class mission ATHENA (Advanced Telescope for High ENergy Astrophysics)
- Technologies
 - Silicon pore optics
 - Slumped glass
 - Replication ?

Marcos Bavdaz, "Silicon Pore Optics", (MPE: 17-19 Sep 2008)

Adaptive x-ray optics

- Light sources will place ever more stringent requirements on optics
- Traditional fabrication and metrology approaches may not work
- One approach: closed-loop, *in situ* monitoring (*e.g.*, using atwavelength sensing) and correction using actuated mirrors
- Some state-of-the-art efforts:

 LLNL has a nascent effort underway that leverages strong visible light AO expertise and LCLS x-ray optics development effort