Imaging Analog Hadron Calorimetry with Scintillators and SiPMs

ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE

DESY Joint Instrumentation Seminar June 24, 2011 Frank Simon Max-Planck-Institut für Physik Excellence Cluster 'Universe'

Why do we care?

 Hadronic calorimeters are mainly used to measure jets: The final product of quarks and gluons created in elementary particle reactions

Every modern high energy physics detector has one - Why are we not satisfied with what we have? Why do we want to do better?

Why do we care?

 Hadronic calorimeters are mainly used to measure jets: The final product of quarks and gluons created in elementary particle reactions

Every modern high energy physics detector has one - Why are we not satisfied with what we have? Why do we want to do better?

"Forscher rätseln über neue Naturkraft"

- Spiegel Online, April 7, 2011

http://www.spiegel.de/wissenschaft/natur/0,1518,755597,00.html

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

Excelle

Why do we care?

 Hadronic calorimeters are mainly used to measure jets: The final product of quarks and gluons created in elementary particle reactions

Every modern high energy physics detector has one - Why are we not satisfied with what we have? Why do we want to do better?

Hadronic Calorimetry in Particle Physics

- Calorimeters measure the energy of particles by total absorption
- Hadrons are challenging: Large volumes & dense materials needed
 - Characteristic length scale given by interaction length: typically ~ 100 g/cm²:
- Hadron calorimeters are always sampling calorimeters:
 Alternating layers of dense absorbers and active elements
- Hadronic showers have a rich structure: Needs a versatile detection medium

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

3

Present Hadron Calorimeters ... And Dreams

 Tower-wise readout: light from many layers of plastic scintillators is collected in one photon detector (typically PMT)
 O(10k) channels for full detectors

Present Hadron Calorimeters ... And Dreams

 Tower-wise readout: light from many layers of plastic scintillators is collected in one photon detector (typically PMT)
 O(10k) channels for full detectors

 Extreme granularity to see shower substructure: small detector cells with individual readout for Particle Flow O(10M) channels for full detectors

Present Hadron Calorimeters ... And Dreams

 Tower-wise readout: light from many layers of plastic scintillators is collected in one photon detector (typically PMT)
 O(10k) channels for full detectors

 Extreme granularity to see shower substructure: small detector cells with individual readout for Particle Flow O(10M) channels for full detectors

With PFA, this provides the factor 2 to 3 improvement we are looking for!

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

Overview

- The first Imaging Calorimeter: The CALICE analog HCAL
 - Making it possible: Scintillator cells with SiPM readout
 - Performance & Results
- Under the Hood
 - Calibration techniques
 - New ideas for scintillator tiles with SiPMs
- Pushing further: The 4th Dimension
 - The T3B Experiment: First glimpse at the time structure of showers

The First Imaging Calorimeter

Photodetectors for Imaging Calorimeters

- Bringing the light from many small cells out of the detector is prohibitive: Fibers use up way too much space!
- Need a light detector directly on the scintillator cell
 - Compact device with low power consumption
 - Insensitive to magnetic fields (the calorimeter usually sits inside a multi-T field!)

The tool of choice: Silicon Photomultipliers

Array of small APDs operated in Geiger mode: Gain 10⁵ - 10⁶

All pixels combined into one signal line: Output proportional to number of fired pixels

Single photon detector capability

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

7

Combining SiPMs with Plastic

- Active medium of choice: Plastic scintillator
 - Cheap, easy to machine, sensitive to charged particles and neutrons, ...

Typical emission spectrum of plastic scintillator:

Maximum in the violet / blue spectral region 400 nm - 450 nm

Combining SiPMs with Plastic

- Active medium of choice: Plastic scintillator
 - Cheap, easy to machine, sensitive to charged particles and neutrons, ...

First generation SiPMs: Sensitivity maximum ~ 550 nm (green)

Typical emission spectrum of plastic scintillator: Maximum in the violet / blue spectral region 400 nm - 450 nm

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

8

Excellence Cluste

Combining SiPMs with Plastic

- Active medium of choice: Plastic scintillator
 - Cheap, easy to machine, sensitive to charged particles and neutrons, ...

First generation SiPMs: Sensitivity maximum ~ 550 nm (green)

 \Rightarrow Wavelength-shifter needed!

Typical emission spectrum of plastic scintillator: Maximum in the violet / blue spectral region 400 nm - 450 nm

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

8

Excellence Cluste

Adding Scintillators

- Plastic scintillator tile, with a wavelength shifting fiber in a machined grove
 5 mm thick, 3 x 3 cm²
- Photon detector (Silicon Photomultiplier) coupled to the WLS fiber

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

Frank Simon (frank.simon@universe-cluster.de)

Excellence Clus

Adding Scintillators

 ~ 200 cells (larger size on the outside for cost reason) make up one I m² layer

- Plastic scintillator tile, with a wavelength shifting fiber in a machined grove
 5 mm thick, 3 x 3 cm²
- Photon detector (Silicon Photomultiplier) coupled to the WLS fiber

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

Frank Simon (frank.simon@universe-cluster.de)

cellence

- Put active elements between passive absorbers
 ~ 20 mm steel in total per layer
 38 layers total: 7602 channels
- Add readout electronics, data acquisition, calibration system ...

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

- Put active elements between passive absorbers
 ~ 20 mm steel in total per layer
 38 layers total: 7602 channels
- Add readout electronics, data acquisition, calibration system ...

absorbers with active layers

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

Frank Simon (frank.simon@universe-cluster.de)

- Put active elements between passive absorbers
 ~ 20 mm steel in total per layer
 38 layers total: 7602 channels
- Add readout electronics, data acquisition, calibration system ...

absorbers with active layers

front-end electronics

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

Frank Simon (frank.simon@universe-cluster.de)

- Put active elements between passive absorbers
 ~ 20 mm steel in total per layer
 38 layers total: 7602 channels
- Add readout electronics, data acquisition, calibration system ...

absorbers with active layers

front-end electronics

data acquisition

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

Frank Simon (frank.simon@universe-cluster.de)

- Put active elements between passive absorbers
 ~ 20 mm steel in total per layer
 38 layers total: 7602 channels
- Add readout electronics, data acquisition, calibration system ...

absorbers with active layers

front-end electronics

data acquisition

calibration system

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

... and putting it into Beam!

- CALICE AHCAL constructed in 2005/2006, beam tests in various configurations at DESY, CERN and Fermilab every year since then

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

• The first large-scale use of silicon photomultipliers - and the first imaging hadronic calorimeter!

A rich data set for detailed studies of hadronic showers:Validation of simulations, better understanding of underlying physics

Unprecedented possibilities!

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

Frank Simon (frank.simon@universe-cluster.de)

Excellence Clus

 The first large-scale use of silicon photomultipliers - and the first imaging hadronic calorimeter!

Shower start point: Study shower properties without fluctuations of initial interaction

 The first large-scale use of silicon photomultipliers - and the first imaging hadronic calorimeter!

Shower start point: Study shower properties without fluctuations of initial interaction
 Transverse shower profile: Crucial for shower separation in PFA

 The first large-scale use of silicon photomultipliers - and the first imaging hadronic calorimeter!

> A rich data set for detailed studies of hadronic showers: Validation of simulations, better understanding of underlying physics Unprecedented possibilities!

Shower start point: Study shower properties without fluctuations of initial interaction
 Transverse shower profile: Crucial for shower separation in PFA
 Longitudinal shower profile: Depth of calorimeter, leakage at high energies,...

 The first large-scale use of silicon photomultipliers - and the first imaging hadronic calorimeter!

> A rich data set for detailed studies of hadronic showers: Validation of simulations, better understanding of underlying physics Unprecedented possibilities!

Shower start point: Study shower properties without fluctuations of initial interaction
 Transverse shower profile: Crucial for shower separation in PFA
 Longitudinal shower profile: Depth of calorimeter, leakage at high energies,...
 Shower substructure: Detailed information about hadronic interactions

• The first large-scale use of silicon photomultipliers - and the first imaging hadronic calorimeter!

A rich data set for detailed studies of hadronic showers: Validation of simulations, better understanding of underlying physics Unprecedented possibilities!

Shower start point: Study shower properties without fluctuations of initial interaction
 Transverse shower profile: Crucial for shower separation in PFA
 Longitudinal shower profile: Depth of calorimeter, leakage at high energies,...
 Shower substructure: Detailed information about hadronic interactions

Energy and energy density: Improved resolution with software compensation

The Things you can do... Comparisons to MC

Comparisons to MC: Understanding shower components

 Provides insight into inner workings of simulations: Which parts work well, which need improvement?

The Things you can do: Shower Substructure

 Unprecedented resolution provides a look deep into the substructure of hadronic showers:

Resolution of individual MIP-like particles

• Newer simulation codes can reproduce the observations: Builds trust in the Geant4 approach... and in PFA performance studies!

- The primary performance criterion for a calorimeter: Energy resolution
- For hadrons, it is a tough business:

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

Excellence Cluster

• The primary performance criterion for a calorimeter: Energy resolution

• For hadrons, it is a tough business:

• The primary performance criterion for a calorimeter: Energy resolution

• For hadrons, it is a tough business:

Excelle

- The primary performance criterion for a calorimeter: Energy resolution
- For hadrons, it is a tough business:

- The challenge:
 - Typically, the response to the em component is larger than to the hadronic component (missing energy in hadronic case), "non-compensation"
 - Large event to event fluctuations between the components
- Limited energy resolution of hadronic calorimeters!

• Ways to improve the resolution:

Increase response to hadronic component:
 Sensitivity to neutrons provided by hydrogenous detection medium
 but: strict requirements on absorber to active medium ratios, longitudinal uniformity,...

• Ways to improve the resolution:

- Increase response to hadronic component: Sensitivity to neutrons provided by hydrogenous detection medium but: strict requirements on absorber to active medium ratios, longitudinal uniformity,...
- Software compensation:

Exploit detector granularity to detect topological differences between components Weight energy deposits according to local energy density or overall shower density

Energy Reconstruction & Software Compensation

- Software compensation in the CALICE analog HCAL: Two techniques
 - Local: use energy content of each cell
 - Global: use shower properties number of cells above and below thresholds

Resolution of 45%/√E with small constant term for pions **in data** Linear energy reconstruction within 1.5% over the full energy range from 10 GeV to 80 GeV

20% improvement of resolution with software compensation

Energy Reconstruction & Software Compensation

- Software compensation in the CALICE analog HCAL: Two techniques
 - Local: use energy content of each cell
 - Global: use shower properties number of cells above and below thresholds

Resolution of 45%/√E with small constant term for pions **in data** Linear energy reconstruction within 1.5% over the full energy range from 10 GeV to 80 GeV

20% improvement of resolution with software compensation

PFA calorimeters can also be pretty good hadronic calorimeters!

Under the Hood: Calibration, Scintillator Tiles & New Ideas

From Signals to Results

- Several calibration levels applied
 - Pushing far beyond the needs of a hadronic calorimeter to fully understand imaging calorimeters with SiPM readout

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

Excellence Cluste

From Signals to Results

- Several calibration levels applied
 - Pushing far beyond the needs of a hadronic calorimeter to fully understand imaging calorimeters with SiPM readout

- Auto-calibration feature of SiPMs: Response to individual photons can be clearly identified: Simple gain determination possible
 - In CALICE: Low-intensity LED light coupled to every cell, high gain of front-end electronics

Knowing the gain allows to convert an observed signal into a number of photons: Crucial for saturation corrections

From Signal to Results

- Calibrating the response of each cell to particles:
 - Setting the overall calibration scale
 - Cell-to-cell intercalibration

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

Frank Simon (frank.simon@universe-cluster.de)

Excellence Cluste

Correcting Saturation

- The number of pixels on the SiPMs is finite: The number of photons that can be detected simultaneously (meaning within a few ns) is limited
 - Leads to saturation for high-amplitude signals

Correcting Saturation

- The number of pixels on the SiPMs is finite: The number of photons that can be detected simultaneously (meaning within a few ns) is limited
 - Leads to saturation for high-amplitude signals

Correcting Saturation

- The number of pixels on the SiPMs is finite: The number of photons that can be detected simultaneously (meaning within a few ns) is limited
 - Leads to saturation for high-amplitude signals

Fine Details - Spreads & Variations

• Matching of fiber to SiPM is tricky: Slight misalignments lead to reduced number of effective pixels - Affects saturation correction

Fine Details - Spreads & Variations

 Matching of fiber to SiPM is tricky: Slight misalignments lead to reduced number of effective pixels - Affects saturation correction

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

22

ce Cluster

Do Cell-to-Cell Spreads Matter?

 High granularity here comes in in our favor: Typically 10 cells / GeV Variations average out

Study in full simulations with PFA event reconstruction: It takes more than 50% RMS cell-

to-cell variations to take a hit in jet energy resolution.

Requirement here is not set by resolution, but by possibility for calibrating in groups

Expected requirement: $\sim \pm 10\%$

New Ideas for the Next Generation

- The wavelength-shifting fiber in the scintillator cells comes at a price:
 - increased mechanical complexity: Fiber needs to be inserted into every tile
 - reduced tolerances: Alignment of fiber end to SiPM critical: Decides light yield of cell and saturation level
 - Slower response: Additional time constant from WLS

New Ideas for the Next Generation

- The wavelength-shifting fiber in the scintillator cells comes at a price:
 - increased mechanical complexity: Fiber needs to be inserted into every tile
 - reduced tolerances: Alignment of fiber end to SiPM critical: Decides light yield of cell and saturation level
 - Slower response: Additional time constant from WLS
 - \Rightarrow Ideally, we would like to get rid of the fiber and we can, now that blue / near-UV sensitive SiPMs exist 24 = 24

Calorimetry with Scintillators and SiPMs

DESY Instrumentation Seminar, June 2011

24

Testing Scintillator Tiles in the Lab

- Performance criteria:
 - Overall signal amplitude ("light yield")
 - Uniformity of response over active area
- Key requirement: Select only penetrating electrons (close approximation of MIPs)
 - Trigger scintillator below tile under study

- Crucial: Capability to test performance of scintillator cells with SiPMs on the bench
- Setup with ⁹⁰Sr source, allows scanning over the active tile area

Fiber Benefits: Uniformity

 The fiber does not only shift the wavelength - it also collects light and guides it to the SiPM by total internal refection: Provides uniform response over the tile surface

For this test: tile read out with MPPC - sensitivity not well matched to fiber emission

Going Fiberless: A Challenge

• Just putting a SiPM to a piece of scintillator does not work:

- Strategy for improvement:
 - Reduce amount of scintillating material close to photon sensor
 - Diffuse light to reduce spatial dependence
 - Optimize light yield

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

Frank Simon (frank.simon@universe-cluster.de)

Going Fiberless: A Challenge

• Just putting a SiPM to a piece of scintillator does not work:

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

Frank Simon (frank.simon@universe-cluster.de)

27

Excellence Cluste

Fiberless Coupling: Reproducibility

- Comparing performance of a small sample of tiles (16 tiles)
 - Each tile read out with a MPPC-50C (thanks Erika!)

Fiberless Coupling: Reproducibility

- Comparing performance of a small sample of tiles (16 tiles)
 - Each tile read out with a MPPC-50C (thanks Erika!)

extracted with Landau + Gauss fit

All photon sensors adjusted to the same gain (slightly higher than specs) Spread likely due to (automated) measurement procedure

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

28 🛤

Fiberless Coupling: Reproducibility

- Comparing performance of a small sample of tiles (16 tiles)
 - Each tile read out with a MPPC-50C (thanks Erika!)

Fiberless Coupling: Scalability?

- An open question: How can we produce millions of cells needed for a complete collider detector?
 - Clear advantage for fiberless design: Should be easier to fabricate

- Designs suited for molding show good uniformity and satisfactory signal amplitudes
- Next steps: Try it out! Need the right material, and a company who can do it... Ideas?

Fiberless Coupling: Scalability?

- An open question: How can we produce millions of cells needed for a complete collider detector?
 - Clear advantage for fiberless design: Should be easier to fabricate

- Designs suited for molding show good uniformity and satisfactory signal amplitudes
- Next steps: Try it out! Need the right material, and a company who can do it... Ideas?
- Additional issues: Coating of tiles
 - Possible solution: Al sputtering
 First tests revealed problems with
 oxidation due to discharged: needs
 further investigation

Pushing Further: The 4th Dimension

Setting the Stage: Hadron Calorimetry at CLIC

- CLIC: A 3 TeV e⁺e⁻ linear collider The key CLIC feature: High Energy!
 - 3 TeV energy means in principle up to 1.5 TeV jets

Shower containment and leakage is a crucial issue

- A (very) deep hadron calorimeter is needed
- → Use compact absorbers to limit the detector radius: Tungsten a natural choice

Setting the Stage: Hadron Calorimetry at CLIC

- CLIC: A 3 TeV e⁺e⁻ linear collider The key CLIC feature: High Energy!
 - 3 TeV energy means in principle up to 1.5 TeV jets

- A (very) deep hadron calorimeter is needed
- \Rightarrow Use compact absorbers to limit the detector radius:Tungsten a natural choice
- Key challenge (linked to high energy and machine-specific issues): Background
 - $\gamma\gamma \rightarrow$ hadrons substantial:
 - ~ 12 hadrons/bunch crossing in the barrel region (4 GeV / bunch crossing) [up to 50 hadrons / 50 - 60 GeV barrel + endcap + plug calorimeters]
 - extreme bunch crossing rate: every 0.5 ns
- Very good time resolution in all detectors important to limit impact of background!

• Hadronic showers have a rich substructure:

Excellence Cluste

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

Frank Simon (frank.simon@universe-cluster.de)

- \Rightarrow Importance of delayed component strongly depends on target nucleus
- \Rightarrow Sensitivity to time structure depends on the choice of active medium

 \Rightarrow Sensitivity to time structure depends on the choice of active medium

T3B: An Experiment for a First Study of the Time Structure

- The CALICE Scintillator-Tungsten HCAL A CLIC physics prototype
 - 30 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm³) absorber (steel of AHCAL prototype replaced by Tungsten)
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)

T3B: An Experiment for a First Study of the Time Structure

- The CALICE Scintillator-Tungsten HCAL A CLIC physics prototype
 - 30 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm³) absorber (steel of AHCAL prototype replaced by Tungsten)
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)
- T3B (Tungsten Timing Test Beam)
 - Goal: Measure the time structure of the signal within hadronic showers in a Tungsten calorimeter with scintillator readout
 - Use a (very) small number of scintillator cells, read those out with high time resolution
 - First test beam campaign: November 2010, CERN PS
 - Second campaign: Started this week at CERN SPS

T3B: An Experiment for a First Study of the Time Structure

- The CALICE Scintillator-Tungsten HCAL A CLIC physics prototype
 - 30 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm³) absorber (steel of AHCAL prototype replaced by Tungsten)
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)
- T3B (Tungsten Timing Test Beam)
 - Goal: Measure the time structure of the signal within hadronic showers in a Tungsten calorimeter with scintillator readout
 - Use a (very) small number of scintillator cells, read those out with high time resolution
 - First test beam campaign: November 2010, CERN PS
 - Second campaign: Started this week at CERN SPS

First information on time structure, possibility for comparisons to Geant4, but: no complete "4D" shower reconstruction!

T3B Technology

- Scintillators and photon sensors:
 - Fast response Use fiberless scintillator tiles
 - High light yield to provide sensitivity to small energy deposits
 - Use photon sensors with high PDE, limited dynamic range: MPPC-50C (400 pixels)
- Data acquisition:
 - Fast sampling to allow for single photon resolution: I GHz or more
 - Long acquisition window to provide sensitivity to late shower components: $2 + \mu s$
 - High trigger rate: faster than CALICE AHCAL trigger, > few kHz

T3B Technology

- Scintillators and photon sensors:
 - Fast response Use fiberless scintillator tiles
 - High light yield to provide sensitivity to small energy deposits
 - Use photon sensors with high PDE, limited dynamic range: MPPC-50C (400 pixels)
- Data acquisition:
 - Fast sampling to allow for single photon resolution: I GHz or more
 - Long acquisition window to provide sensitivity to late shower components: $2 + \mu s$
 - High trigger rate: faster than CALICE AHCAL trigger, > few kHz
- Adopted solution for T3B: PicoScope 6403 (USB controlled oscilloscope)
 - 1.25 GHz sampling for 4 channels per unit
 - I GB buffer memory (shared between channels)
 - Burst trigger mode: Maximum rate determined by window length:
 - $\sim 500 \; kHz$ for 2µs acquisition window

The T3B Setup: Test Beams at CERN PS & SPS

• 15 3 x 3 cm² scintillator cells, sampling the radial extent of the shower

beam axis

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

The T3B Setup: Test Beams at CERN PS & SPS

• 15 3 x 3 cm² scintillator cells, sampling the radial extent of the shower

beam axis through cell 0

Stand-alone system:

- Installed downstream of CALICE WHCAL, depth ~ 4 λ
- Calibration triggers on dark noise between spills
 Synchronization with CALICE
- Triggered by CALICE trigger common analysis possible in the future

Data Analysis - Technique

- For each channel, a complete waveform with 3000 samples (800 ps /sample) is saved
- Waveform decomposed into individual photon signals, using averaged 1 p.e. signals
 - Average I p.e. signal taken from calibration runs between spills, refreshed every 5 minutes: Continuous automatic gain calibration

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

36

First Results - Muons

- Energy of muons reconstructed in the central T3B tile
 - Full reconstruction with waveform decomposition
 - Response variations from cell to cell: 10% (from bench measurements)

• Two integration times: Short time window rejects a significant fraction of SiPM afterpulses (detailed investigations of other contributions ongoing)

First Results - Muon Timing

- Present analysis: determining the Time of First Hit
 - minimum of 8 p.e. (~ 0.4 MIP) within 9.6 ns \bullet

Time of First Hit for Muons:

Response to instantaneous energy deposit

Muons from PS: Energy a few GeV

First Results - Muon Timing

- Present analysis: determining the Time of First Hit
 - minimum of 8 p.e. (~ 0.4 MIP) within 9.6 ns

ALICE T3B Preliminary

Time App for Huons:

- Response to instantaneous energy deposit
- Time resolution (including trigger): ~ 800 ps
- Consistent with simulations including time smearing

Muons from PS: 330 50 Energy Hit [ns]

310

First Results - Pion Data

- Data taken in CALICE WHCAL Testbeam at CERN PS
 - Current analysis: Highest energy taken at PS 10 GeV $\pi^{\text{-}}$
 - Time of First Hit

Time of first hit:

Easy to define in data and MC without detailed treatment of

- afterpulsing
- time distribution of scintillator response
- photon travel

Calorimetry with Scintillators and SiPMs DESY Instrumentation Seminar, June 2011

39 tree

Time of First Hit in Simulations

- Simulations using smeared photon distributions
- Same analysis procedure as real data
- Two physics lists:
 - QGSP_BERT: LHC standard, used for CLIC detector studies
 - QGSP_BERT_HP: Variant with high precision neutron tracking

DESY Instrumentation Seminar, June 2011

Data & Simulations - First Results

- QGSP_BERT shows a pronounced tail of late energy depositions
- Data agrees better with QGSP_BERT_HP Reduced activity beyond 20 ns

Data & Simulations - First Results

Compact Comparison:

Mean Time of First Hit

 calculated in a time window of 200 ns (-10 ns to 190 ns from maximum in tile 0)

- Data consistently described by QGSP_BERT_HP
 - QGSP_BERT deviates strongly

Data & Simulations - First Results

Compact Comparison:

Mean Time of First Hit

 calculated in a time window of 200 ns (-10 ns to 190 ns from maximum in tile 0)

- Data consistently described by QGSP_BERT_HP
 - QGSP_BERT deviates strongly
- High precision neutron tracking or other means to suppress excessive
 late energy depositions necessary to describe observed time structure in T3B

42

Excellence Cluste

Conclusion & Outlook

Summary I

- For a new generation of colliders, we want a new generation of detectors: High granularity, paired with sophisticated algorithms promises unprecedented resolution
- Compact silicon-based photon sensors enable highly granular calorimeters with scintillators as active medium
- CALICE has 5 years of operational experience with a physics prototype
 - First large-scale use of SiPMs Successful proof of concept
 - Good performance: A PFA calorimeter can be a very good HCAL as well!
 - Fantastic opportunities to study the details of hadronic showers: Unprecedented possibilities for the validation and improvement of simulation models

Summary II

- Detailed understanding of the characteristics of a SiPM calorimeter often beyond what is needed to obtain good hadronic performance
 - Calibrations with muons & LEDs
 - Correction for saturation of photon sensors
 - Large sample studies of scintillator tiles and SiPMs
- Ideas for the next generation of detectors
 - Not discussed here: Technical prototype of CALICE: Compact, fully integrated readout electronics
 - Fiberless scintillator tiles: Fast response, good uniformity & reproducibility Need ideas for mass production!

Summary III / Outlook

- A versatile technology: With the right readout, the time structure of hadronic showers is accessible
 - First proof of concept measurements Already a physics conclusion: The current default physics list in HEP, QGSP_BERT, has too much late energy deposit: Overestimation of needed integration time. High precision neutron tracking provides improved performance
- Upcoming opportunities:
 - Next generation electronics for the CALICE AHCAL: Time stamping for every channel - Potentially a full "4D-Calorimeter"
 - Currently taking data with Tungsten absorbers: A whole new game of shower model validations & detector studies

Summary III / Outlook

- A versatile technology: With the right readout, the time structure of hadronic showers is accessible
 - First proof of concept measurements Already a physics conclusion: The current default physics list in HEP, QGSP_BERT, has too much late energy deposit: Overestimation of needed integration time. High precision neutron tracking provides improved performance
- Upcoming opportunities:
 - Next generation electronics for the CALICE AHCAL: Time stamping for every channel - Potentially a full "4D-Calorimeter"
 - Currently taking data with Tungsten absorbers: A whole new game of shower model validations & detector studies

... and who knows what other exciting ideas and projects come next!

