UNIVERSITY OF TWENTE.

Chip Post-processing for Particle Detectors Jurriaan Schmitz

About Jurriaan Schmitz

My Ph.D. work at NIKHEF 1990-1994

- Detector Research and Development
- Micro Strip Gas Counter (MSGC)

Key results:

- DME/CO₂ gas mixture
- MC simulation of detector response
- Invention of the MTGC
- Study of preamplifier optimization
- Study of application in LHC experiments (...)

My work at Philips Research 1994-2002

CMOS transistor downscaling:

 How to improve the fabrication process to make a smaller MOS transistor

Key results:

- 15 US patents
- Many IEEE related activities (conference organization etc.)
- EU projects
- Work experience at IMEC (BE)
- Job offer from the UT

NMOS Transistor (n-channel MOSFET)

My work since 2002

Full professor of Semiconductor Components

- Research on microtechnology
- Make new types of microchips
- Use the Pizza technology approach
- + teaching
- + leading a group of ~25 researchers

Outline

Part I: the technology foundation

- The making of CMOS microchips
- Integration of CMOS with sensors / MEMS
- The success of pizza-technology
- Recent results

Part II: radiation imaging

- InGrid detector fabrication
- Results with InGrid detectors
- Perspective

Source: www.intel.com

transistors

Moore's Trend explained

The state of the art (1): CMOS

- Nanometer precision
- Sub-ppm materials purity

- Nanometer precision
- Sub-ppm materials purity

High magnification SEM image of IM Flash Technologies (IMFT) 4G 50nm NAND Flash (source: Semiconductor Insights)

The state of the art (3): DRAM

Qimonda

SAMSUNG

- Nanometer precision
- Sub-ppm materials purity

The manufacturing of a microchip

Process steps:

- Oxidation
- Photolithography
- Etching
- Diffusion
- Implantation
- Deposition

JNIVERSITY OF TWENTE.

- Cleaning
- Polishing (CMP) stud

Complete process:

- 300 500 process steps
- 20 50 lithography steps

Repeated application of process steps

Local interconnect

Diffusion

The More than Moore domain of microtechnology

More than Moore: new functions

Traditional IC:

- Computing
- Data Storage
- Electrical Communication

Possible extensions:

- High quality passives
- Wireless communication
- Optical communication
- Sensing and Actuating

Integration:

"ubiquitous computing" demands it microtechnology can deliver it

The fabrication challenge

UNIVERSITY OF TWENTE.

How to combine electronics with sensors, actuators, optics, ...?

- Hybrid (solder/bump the components together)
- Pre-CMOS: Make component, then make CMOS on the same wafer
- Intermediate: Mix the component and CMOS processes
- ... or post-CMOS: add components on top of a finished CMOS chip

My definition of "a chip"

Not this

- Not even this
 - But this

CMOS post-processing: "pizza technology"

- Use CMOS wafers as a base
- Stack other things on top
- Creating a new microsystem with added functionality
- Also known as: Above-IC

Pizza #1: the Digital Micromirror

Digital Micromirror: Texas Instruments, 1980's <u>www.dlp.com</u>

a. Chip fabrication

b. Wafer dicing

Logistics

a. Chip fabrication

b. Post-processing

c. Wafer dicing

 Chip fabrication: standard, at any regular (CMOS) fab

 Wafer dicing, packaging: specialized work like MEMS packaging, e.g. Amkor, Boschman

Pros and cons

a. Chip fabrication

b. Post-processing

c. Wafer dicing

- We do not interfere with the (CMOS) fabrication process
- We can buy good quality chips
- We can use any lab for this
- Excellent alignment and galvanic contacts
- We must keep the CMOS intact
- We have to think the final stages through very carefully! (Standard solutions may fail)

CMOS post-processing: game rules

Careful treatment of the underlying CMOS:

- Temperature ≤ 450 C
- Mild (or no) plasmas
- Maintain the H balance in the MOSFET
- Limited mechanical stress

Choose your materials for good adhesion and durability

The CMOS properties must remain unchanged: only then the standard infrastructure can be used.

Further reading: Jurriaan Schmitz, Nucl. Instr. Meth. A 576 (2007) 142.

InGrid: a radiation imaging detector

Choice of materials

Process flow – suspended membrane

- Deposit spark protection film: a-Si or Silicon-rich nitride
- SU-8 photoresist for pillars
- AI deposition is critical: unexposed SU-8 (yellow) should not crosslink
- Al patterning also critical: lithography at room temperature to protect SU-8
- Membrane release at end, after wafer dicing (fragility)

Silicon-rich nitride: anti-spark material

Sparks cause permanent damage

Originally a-Si:H, now Si-rich Nitride

- Si₃N₄ typical anti-scratch layer on CMOS
- SiRN, excess of Si to tune resistivity and mechanical stress
- Deposited by PECVD at 300 °C or lower

UNIVERSITY OF TWENTE.

NIM-A, in press

SU-8 material

- Negative tone photoresist (developed by IBM Research)
- Polymer based (EPON SU-8 from Shell Chemical)
- Available in many viscosities
- Thickness ranges from 1 to 1000 µm
- Processing similar to normal UV lithography

Examples of SU-8 use

- Also applicable in proportional chambers?
- Radiation hardness: Key, Cindro, Lozano 2004
- Dielectric strength?
- Outgassing?

Dielectric strength of SU-8

Outgassing from SU-8

UNIVERSITY OF TWENTE.

- Outgassing rate comparable to Kapton
- 20–30 min Hard-Bake → efficient pre-conditioning
- Components directly linked to resist formulation

J. Melai et al., Microelectronic Engineering 86 (2009) 761–764

Testing of the InGrid chips

Chip bonding

- Finish post-processing
- Attach chip (w/ InGrid) to board
- Wirebonding of connections
- Mount chamber onto board

InGrid performance

- High single e⁻ collection efficiency (> 90% at 10⁴ gain)
- Good energy resolution (11.7% FWHM for ⁵⁵Fe in Ar/CH₄)
- 2D and 3D tracking of MIPs etc 20 µm position resolution!
- Various device designs: Micromegas, GEM, multiple electrodes

Homogeneous response

Seperately mounted Micromegas

Post-processed InGrid

Microlithography \rightarrow alignment tolerance (few μ m)

 \rightarrow alignment between pixels and grid (55 µm pitch)

 \rightarrow no more Moiré patterns

⁹⁰Sr tracks recorded with a 3 cm Timepix TPC

Courtesy: Martin Fransen and Lucie de Nooij, NIKHEF UNIVERSITY OF TWENTE.

²⁴Na decay

Courtesy: Harry van der Graaf, NIKHEF UNIVERSITY OF TWENTE.

Beam tests – preliminary findings

Several PS beams at CERN Ar/Iso 80/20 and DME/CO₂ 50/50

Few-GeV e⁻ at DESY 11.5 mm high TPC, Ar/Iso 80/20

Position resolution better than 20 µm in XY plane Decent operation, but sudden deaths observed

Making InGrid single-photon sensitive

Set-up for photon detection

- Typical InGrid on a Timepix chip
- GOSSIP/NEXT chamber (Nikhef), USB readout
- Thermal evaporation of CsI (Weizmann)
- Tested using UV source, filters, shadow mask

InGrid images under UV irradiation

Other tastes of Pizza

- Semiconductors on a chip
 - Amorphous silicon: shown (e.g. Wyrsch et al.)
 - Polycrystalline silicon: first steps made
 - CIGS: rad-hard!!
- Integrate an MCP?
- Grow a scintillator on an APS sensor?

Vallerga et al. Melai et al.

SigmaDigitalXray

Outlook

Pizza technology can supply:

- Faster
- More accurate
- Lower-mass
- Cheaper-per-channel gaseous radiation imaging detectors

But further work is required!!

- Upscaling to dm² m² areas
- Ultimate resolution
- Radiation / ageing tests
- ASIC design

Thanks...

My low-temperature coworkers:

- Members of my group
- Yevgen Bilevych, Marten Bosma, Max Chefdeville, Harry van der Graaf, Martin Fransen, Jan Visschers, Jan Timmermans at Nikhef
- GridPix friends: Bonn, Saclay, SMC, IZM

Our sponsors:

- The Dutch Technology Foundation STW; FOM
- The Dutch Ministry of Economic Affairs
- NXP Research
- ...and the Medipix consortium

Further reading

Pizza technology:

- J. Schmitz, Adding functionality to microchips by wafer postprocessing, Nucl. Instr. And Meth. A 576 (2007) pp. 142–149.
- J. Schmitz, The InGrid chip post-processing technology for radiation imaging, Proc. Of Science 2010 (available online).

InGrid radiation imager:

- V. M. Blanco Carballo et al.,
 - IEEE Electron Device Letters 29 (6) pp. 585-588 (2008).
- J. Melai et al., accepted for Nucl. Instr. Meth. A. 2010.