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MM for ATLAS upgrade

THGEM for COMPASS
upgrade

GEM for CMS upgrade

GEM for ALICE TPC
upgrade

Joint Instrumentation Seminar, DESY/Hamburg, September 4, 2015

OUTLINE of the TALK:

 Introduction: Major Micro-Pattern gas Detector Technologies
(GEM, Micromegas, Thick GEM, InGrid, mPIC)

 Summary of the RD51 – MPGD Technology Highlights
(Large area MPGDs - Support of HL- HLC Upgrades, R&D (quality 

control, long-term tests), Academia-Industry Matching Event, 
Software & Simulation, SRS Electronics, CERN MPGD Production 

Facility & Industrialization, RD51 Test Beam Facility, Training)
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Gaseous proportional tracking detectors that revolutionized High Energy Physics 
With Fabio Sauli et Jean Claude Santiard

The 1st “Large Wire Chamber”… 

Georges Charpak
1924 – 2010 

The invention revolutionized 
particle detection, which 
passed from the manual 

to the electronic era.



UA1 used the largest imaging drift 
chamber of its day 

(5.8 m long, 2.3 m in diameter)

It can now be seen in the CERN 
Microcosm Exhibition

Z  ee (white tracks)

Particle trajectories in the CERN-UA1 
3D Wire Chamber 

Discovery of W and Z bosons
C. Rubbia & S. Van der Meer 

Nobel Prize 1984 

http://en.wikipedia.org/wiki/Drift_chamber
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ATLAS - TRD
(straws)

- - - MDT (drift 
tubes), CSC

RPC, TGC 
(thin gap

chambers)
CMS

TOTEM
- - - - - Drift tubes, 

CSC, GEM
RPC, CSC

GEM

LHCb - Straw
Tubes

- - - MWPC MWPC, 
GEM

ALICE - TPC 
(MWPC)

TOF(MRPC),
PMD, HPMID 

(RICH-pad 
chamber),

TRD (MWPC)

- - Muon pad 
chambers

RPC

ALICE TPC Straw tubes CMS CSC

Gaseous detectors are still the first choice whenever the large-area 
coverage (e.g. muon systems) with low material budget is required



• Relevant scale in HEP: t ~ L(m)/c ~ o(ns)

• Traditional technique:
– Scintillator + PMT ~ o (100 psec)

• Breakthrough with a spark discharge in gas
– Pestov counter ALICE MRPC ~ 50psec

Multi-Gap Resistive Plate Chamber:  Basic Principle

Technology Time resolution

• Pestov Counter 30-50 ps

• RPC ~ 1-5 ns (MIP)

• MultiGap RPC ~ 50 ps (MIP)

• GEM ~ 1-2 ns (UV)
~ 5 ns (MIP)

• Micromegas ~ 700 ps (UV)
~ 2-5 ns (MIP)

C. Williams, CERN Detector Seminar
“ALICE Time of Flight Detectors”:
http://indico.cern.ch/conference
Display.py?confId=149006
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ALICE-TOF has 10 gaps (two stacks of 5 gas gaps);
each gap is 250 micron wide



ATLAS TGC LHCb Outer
Tracker

ALICE MRPCALICE HPMID

Upgrade Options  for HL-LHC:



INSTRUMENTATION FRONTIER:

DEVELOPMENT OF MICRO-PATTERN 
GASEOUS DETECTOR TECHNOLOGIES

Detector –Electronics Integration  Enabled by Advanced Technologies
(better granularity / high precision / small amount of material)

 Modern photo-lithography technology Micro-Pattern Gas Detectors
 Microelectronics – eg. Silicon pixels
 Bump bonding technology – low capacitance connections

Trade-offs between high-speed, power, S/N, integration, segmentation, 
radiation tolerance defined by the state-of-the-art in microelectronics

50 µm

140 µm

Micromegas:

10 µm

100 µm

Ingrid

High Rates & enormous occupancy:

Silicon detectors:

Si-strips Pixel (2D) 3D detectors
& 3D TSV integration

Gaseous detectors:

Wire Chamber Wireless MPGD 
(2D)  InGrid/Timepix (3D)

MSGC:



Christian Lippmann, 2nd ECFA High Luminosity LHC Experiments 
Workshop, Aix-les-bains, France, October 21-23  (2014)



 Micromegas

 GEM

 Thick-GEM, Hole-Type and RETGEM

 MPDG with CMOS pixel ASICs (“InGrid”)

 Micro-Pixel Chamber (µPIC)

Electrons

Ions

60 %

40 %

Micromegas GEM THGEM MHSP

InGrid

µPIC

Rate Capability: 
MWPC vs MSGC



Thin metal-coated polymer foil chemically pierced by a high density of holes  

 Electrons are collected on patterned 
readout board. 

 A fast signal can be detected on the lower 
GEM electrode for triggering or energy 
discrimination. 

 All readout electrodes are at ground potential.

S1 S2 S3 S4

Induction gap

e-

e-

I+

F. Sauli, Nucl. Instrum. Methods A386(1997)531
F. Sauli, http://www.cern.ch/GDD

A difference of potentials of ~ 500V is 
applied between the two GEM electrodes.

the primary electrons released by the
ionizing particle, drift towards the holes
where the high electric field triggers the 
electron multiplication process.



Animation of the avalanche process 
(monitor in ns-time electron/ion 
drifting and multiplication in GEM):

electrons are blue, ions are red, the 
GEM mesh is orange

• ANSYS: field model 

• Magboltz 8.9.6: relevant 
cross sections of electron-
matter interactions

• Garfeld++:  simulate 
electron avalanches

http://cern.ch/garfieldpp/examples/gemgain

http://cern.ch/garfieldpp/examples/gemgain


F. Sauli, NIM A386(1997) 531;
F. Sauli, http://www.cern.ch/GDD

Full decoupling of amplification stage (GEM)
and readout stage (PCB, anode)

Cartesian 
Compass, LHCb

Small angle

Hexaboard, pads
MICE

Mixed
Totem

2009: NEW:  Single mask GEM production technique 
allow to extend GEM foils to ~ m2 area

2009:1996:



Y. Giomataris et al, NIM A376(1996)29

Micromesh Gaseous Chamber: 
micromesh supported
by 50-100 µm insulating pillars

Multiplication (up to 105 or more) 
takes place between the anode and
the mesh and the charge is collected
on the anode (one stage)

Small gap: fast collection of  ions



 Standard MM could not be operated in 
neutron beam

 HV break-down and currents > 
several µA for gains ~ 1000–2000

 MM with resistive strips worked 
perfectly well 

 No HV drops, small spark currents 
up to gains of 2 x 104

Standard MM

Resistive MM

Since 2010: Resistive Micromeas technology

 Problem was solved by adding a layer of
resistive strips above the readout strips

 Spark neutralization/suppression
(sparks still occur but become inoffensive)





INSTRUMENTATION FRONTIER: 

PIXEL READOUT OF MPGDs –
Ultimate Gas-Silicon Detector Integration

Ingrid

Triple GEM stack + Timepix ASIC (5 GeV e-):

1.5 cm

“Octopuce” (8 Timepix ASICs):

X-Rays α-particles



“InGrid”:

Protection Layer (few µm)
against sparks

~ 50 µm

Medipix2 / Timepix ASIC

“InGrid” Concept: By means of advanced wafer processing-technology INTEGRATE 
MICROMEGAS amplification grid directly on top of CMOS (“Timepix”) ASIC

3D Gaseous Pixel Detector  2D (pixel dimensions) x 1D (drift time)



Since 2011: Major Step Forward 
InGrid Production on a wafer level (107 chips)

2005: Single “InGrid” Production

2009: “InGrid” Production on a 
3 x 3 Timepix Matrix



MICROMEGAS (InGrid)
covered with CsI

photon

CsI PC

Chip area: 14x14mm2.
(256×256 pixels of 55×55 μm2)
Chip area: 14x14mm2.
(256×256 pixels of 55×55 μm2)

TIMEPIX:

Ingrid without CsI

Ingrid with CsI PC:

2D UV Image 
of a 10mm

diameter mask  

UV absorbed 
by the

fingerprint
on the window 

M. Fransen, RD51 Mini-Week, Sep. 23-25, 2009, WG2 Meeting



Multi-GEM Gaseous Photomultipliers:

 Largely reduced photon feedback
(can operate in pure noble gas & CF4)

 Fast signals [ns]  good timing
 Excellent localization response
 Able to operate at cryogenic T

CsI ~ 500 A

Semitransparent
Photocathode (PC)

CF4
770 torr

3 GEM
σ = 1.6 ns

Single Photon Time Resolution:

CsI ~2500 A

Reflective 
Photocathode (PC)

200 µm

FWHM ~160 µm 
Beam ~ 100 µm 

Intrinsic accuracy 
σ (RMS) ~ 55 µm 

Single Photon Position Accuracy:

E.Nappi, NIMA471 (2001) 18; T. Meinschad et al, NIM A535 (2004) 324; D.Mormann et al., NIMA504 (2003) 93

Micromegas: σ ~ 0.7 ns with MIPs

GEM Gaseous Photomultipliers (GEM+CsI photocathode) to detect single photoelectrons 
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STANDARD GEM
103 GAIN IN SINGLE GEM

THGEM
105 gain in single-THGEM

1 mm

0.1 mm rim
to prevent
discharges

Simple & Robust Manufactured by standard PCB techniques 
of precise drilling in G-10 (and other materials) and Cu etching

Other groups developed
similar hole-multipliers:

- Optimized GEM: 
L. Periale et al., 
NIM A478 (2002) 377.

- LEM: P. Jeanneret, 
- PhD thesis, 2001.

• Effective single-electron detection
(high gas gain ~105 (>106) @
single (double) THGEM)

• Few-ns RMS time resolution
• Sub-mm position resolution
• MHz/mm2 rate capability
• Cryogenic operation: OK
• Gas: molecular and noble gases
• Pressure: 1mbar - few bar

106

C. Azevedo et al.;  arXiv: 0909.3191

Double THGEM or THGEM/Micromegas



Azevedo et al., arXiv:0909.5357 

PE efficiency
extraction
into the gas
vs vacuum:

Single PE
collection efficiency
into THGEM holes:

http://arxiv.org/abs/0909.5357


A.Buzulutskov et al, IEEE TNS 50 (2003) 2491;
A.Bondar et al, NIMA 524 (2004) 130

A.Bondar et al, NIMA 
556 (2006) 273

A.Rubbia, J. Phys. Conf. 
Ser. 39 (2006) 129

A.Buzulutskov, A.Bondar, 
JINST 1 (2006) P08006

Y.L.Ju et al, Cryogenics 47 
(2007) 81

A. Bondar et al, JINST 5 (2010) P08002
A.Buzulutskov et al, EPL 94 (2011) 52001

L.Periale et al, IEEE TNS 
52 (2005) 927

M.Gai et al, Eprint
arxiv:0706.1106 (2007)

D.Akimov et al, JINST 
4 (2009) P06010

A.Bondar et al, 
JINST 3 (2008) 
P07001

P.K.Lightfoot et al, JINST 4 
(2009) P04002
N.McConkey et al, IPRD 
2010, Siena, Italy; Nucl. 
Phys. B Proc. Suppl. 215 
(2011) 255

D.Akimov, NIMA 628 (2011) 50
S. Duval et al, JINST 6 (2011) P04007S. Duval et al, JINST 

4 (2009) P12008



µ-PIC：micro pixel gas chamber
 Area: 10x10cm – 30x30cm
 Readout pitch :400μm
 Production using PCB technology

Invented by A.Ochi, T.Tanimori (NIMA471 (2001) 264)
Application: X-ray imaging, Gamma camera, 
Medical RI tracing

NEW: µ-PIC design with resistive 
cathode:

• Cathode patterns are formed by resistive 
material.

• Large current from spark reduce the e-field, 
and spark will be quenched.

• This design provide one promising 
possibility of MIP detector under hadronic
background

Surface pictures of resistive µPIC:



 High Rate Capability

 High Gain

 High Space Resolution

 Good Time Resolution

 Good Energy Resolution

 Excellent Radiation 
Hardness

 Ion Backflow Reduction

 Photon Feedback 
Reduction

Micromegas

GEM

Micromegas

2x106 Hz/mm2
GEM

GEM

σ time ~ few ns

σspace ~ 15-40 µm

One of the recent reviews describing 
the progress of the RD51 collaboration:



MSGC (ILL, A. Oed) GEM (CERN, F. Sauli)
MicroMEGAS (CEA Saclay, Y. Giomataris)

µ-PIC (A. Ochi, T. Tanimori)
Capillary plate (Yamagata U., H. Sakurai)

RD51
collaboration

InGrid

RD28

28

LEM (Periale)
THGEM(Chechik)

 Many of the Micro-Pattern Gaseous Detector Technologies were introduced before 
the RD51 Collaboration was founded

 With more techniques becoming available (or affordable), new detection concepts 
are being introduced and the existing ones are substantially improved



• More than 80 groups
• More than 400 people
• National and International Laboratories
• National Institutes and Universities

The main objective is to advance MPGD technological development and 
associated electronic-readout systems, for applications in basic and applied 
research”: http://rd51-public.web.cern.ch/rd51-public

10

3

58

15

 Large Scale R&D program to advance 
MPGD Technologies 

 Access to the MPGD “know- how”

 Foster Industrial Production

http://rd51-public.web.cern.ch/rd51-public


 Consolidation of the Collaboration and MPGD Community Integration (> 80 
institutes, 450 members);

 Major progress in MPGD Technologies: Large area GEM (single mask), 
Micromegas (resistive) and THGEM; picked up by experiments, including 
LHC upgrades;

 Secured future of the MPGD Technologies development through the TE MPE 
workshop upgrade and FP7 AIDA contribution

 Contacts with industry for large volume production; MPGD industrialization 
and first industrial runs

 Major improvement to the MPGD simulation software framework for small-scale 
structures for applications;

 Development of common, scalable readout electronics (SRS); many 
developers and > 50 user groups; Production (PRISMA company and availability 
through CERN store); Industrialization (re-design of SRS in ATCA in EISYS)

 Infrastructure for common RD51 test beam and facilities (> 20 user groups);



RD51

Large Area Detectors
Assembly Optimization 

RD51 Common Projects
Generic R&D, QA

Long Term Stability

Software Tools 
and 

Simulations
MPGD 

Electronics

CERN MPGD 
Workshop,

Quality Control
and 

Industrialization
RD51 Common

Test Beam and Lab 
Facilities

WG5:

WG4:

WG1:
WG2:

WG7: WG6:
• Conferences / Schools
• Academia-Industry 

Matching Events

WG3/NEW WG:
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ATLAS Micromegas Micromegas

CMS

TOTEM

Backing-HE
(GEM, MM)    

GEM

GEM

GEM

GEM

LHCb GEM

ALICE TPC (GEM)

Linear 
Collider

TPC(MM,GEM, 
InGrid)

DHCAL(MM,
GEM,THGEM)

ATLAS Micromegas:
On a road to large-area detectors:

(1.2 * 0.6 m2)

CMS GEM:
Trapezoidal GEM Prototype (99 x 45-22 cm2)



ALICE (GEM) ATLAS NSW (Micromegas)

LHC Upgrades: Original R&D efforts emerged from RD51 activities.
Today:  production phase under the project effort ,  access to RD51 facilities (laboratory, test beam, 

workshops) and tools (simulation, electronics,…) to facilitate this particular phase



CMS (GEM)
COMPASS RICH-1 (THGEM+MM)

LHC Upgrades: Original R&D efforts emerged from RD51 activities.
Today:  production phase under the project effort ,  access to RD51 facilities (laboratory, test beam, 

workshops) and tools (simulation, electronics,…) to facilitate this particular phase



Range of track angles in NSW

 Using charge amplitude (Centroid hit)
Spatial resolution rapidly decreases for inclined 
tracks if the cluster centroid (e.g., charge weighting)
is used; small strip pitch does not help

 Using time information (TPC segment)

Measuring the arrival time of the signals opens a new 
dimension; in this case the MM functions like a TPC
=> Track vectors/plane for inclined tracks

Combination of centroid & TPC 

spatial resolution < 100 µm independently 
of track incident angle !

Spatial resolution vs magnetic field: J. Wotschack



Stress and deflection test

Test of segmented FR4 skin glueing
with different stiffeners

Will serve for deformation studies
1.8 m

J. Wotschack



2010
Generation I

The first 1m-class 
detector ever built 
but still with spacer 
ribs and only 8 
sectors total. 
Ref.: 2010 IEEE (also 
RD51-Note-2010-005)

2011
Generation II

First large detector 
with 24 readout sectors 
(3x8) and 3/1/2/1 gaps 
but still with spacers 
and all glued. 
Ref.: 2011 IEEE. Also 
RD51-Note-2011-013.

2012
Generation III

The first sans-spacer 
detector, but with the 
outer frame still 
glued to the drift. 

Ref.: 2012 IEEE N14-
137.

2013
Generation IV

First detector with 
complete mechanical 
assembly; no more 
gluing parts 
together! 

MPGD 2013;
and IEEE2013.

2014
Generation V

Nearly final CMS 
design: stretching 
apparatus that is now 
totally inside gas 
volume. Ongoing 
test beam campaign 
for final 
performance 
measurements.

2014/2015
Generation VI

Latest detector 
design; to be 
installed in CMS.
Optimized final 
dimensions for max. 
acceptance and final 
eta segmentation. 
Ongoing test beam 
campaign for DAQ

• GEM foil production uses single mask technology 
for wet etching

– Dramatically reduces foil production costs 
and allows large sizes to be manufactured

• NS2 assembly technique developed
– Construction time reduced from week(s) to 

two hours per chamber A. Sharma



E. Oliveri



MPGDs are foreseen as TPC readout for ILC
or CLIC (size of endcaps of ~ 10 m2):

 Standard “pad readout” (1x 6 mm2): 8 rows of 
det. modules (17×23 cm2); 240 modules per endcap

 “Pixel readout” (55x 55µm2): ~100-120 chips 
per module → 25000-30000 per endcap

Backgrounds in 
CLIC TPC requires
very small pixels 

(< 1x1 mm2)

CLIC TPC
Simulation

(M. Killenberg)

ILCTPC with MPGD-Readout:
(spatial resolution < 100 µm @ 5T)

 Laser-etched GEMs 100µm thick (‘Asian 
GEMs’)

 Wet-etched triple GEMs

 Resistive MM with dispersive anode

 GEM + pixel readout 
 InGrid (integrated Micromegas grid with 

pixel readout)



Diameter 77cm

Large TPC Prototype with versatile endplate @ DESY

Efforts to improve the modules design for all technologies. Several test beams campaigns:

 7 Micromegas modules with 2-phase C02 cooling
With beam and laser dots:
UV laser gererates MIP tracks 
& illuminate calibration spots

2P CO2
Cooling

MM (B=0): Before correctionGoal for final TPC can be reached:
GEM / MM performance similar

MM (B=0): After correction
(note – different scale)



LARGE AREA: 160 InGrid detector setup
 3 modules: 1 x 96 InGrid, 2 x 24 InGrids
 Readout 5 SRS FECs

By design:
 Singe electron detection
 Time-of-arrival measurement
 High granularity; Uniform gas gain

Module with
96 InGrids

on 12 „octoboards“

24 InGrid installation in LP

LP endplate with 3 modules

Preliminary data analysis:
 Track reconstruction
→ straight and curved tracks
→ ≈ 3000 hits per 50 cm track

 Physics properties of the TPC
→ field distortions; reliability
→ dE/dx resolution;delta identification
→ single point resolution
→ momentum measurement

M. Lupberger



PMTs not adequate because of large angular 
acceptance only small demagnification

factor of optical system allowed (large 
distortions); 5 m2 of PMTs not affordable. 

 COMPASS RICH I:  UPGRADE OF COMPASS RICH I:
 1999-2000: 8 MWPC with CsI (RD26 @ CERN)

After a long-term fight for increasing electrical stability 
at high rates: robust operation is not possible at gain~105

because of photon feedback, space charge & sparks

 MPGD-Photon Detectors are the best option

 beam off:  stable
operation up to > 2300 V
 beam on: stable operation
possible only up to ~2000 V

 2006: 4 central CsI+cathodes:
remove and insert frames with
MAPMTs and lense telescopes

PMTs not adequate  only small demagnification
factor allowed; 5 m2 of PMTs not affordable. 

Micromegas +THGEM, the hybrid architecture
structure, is one of the most  advanced scheme:

Higher performance reached with the MM + THGEM 
architecture (than multiple-THGEM structures)

F. Tessarotto



Double-phase Ar LEM TPC 



Calorimetry with MPGD: Fast Timing:

Resistive Material: 

≈50phe

≈50phe

New Materials (Glass GEM):

The Latest Results of Crystalized Glass GEM, Y. 
Mitsuia, RD51 miniweek (GDD/RD51 lab)

B10

Gd

Neutrons Detection:

European Spallation Source (ESS)

Large Area Thin Detectors:

E. Oliveri



≈50phe

≈50phe

FAST-TIMING MPGDs on MM concept:

Convert single-photoelectron time jitter 
of a few hundred picoseconds into an incident-
particle timing response of the order of 50 ps

Study of charge-transfer properties through
graphene for gas detector applications:

F. Resnati



Star Mirror Snake

Real R1 values: 
400 -750 KOhms 
with 100KΩ/Sq

Real R1 values: 
4 MOhms with 100KΩ/Sq

Real R1 values: 
40 MOhms With 100KΩ/Sq

Work by LAPP Annecy, NCSR Demokritos , Univesrity of Athens, CEA IRFU 

M. Chefdeville, T. Geralis

Optimisation:
 reduce resistivity 
and evacuation time 
but still suppress sparking

– “Vertical” evacuation
of charge using buried 
resistors, proposed 
by Rui de Oliveira

– Ongoing program: 
Vary the RC, measure 
the linearity (rate & 
dE/dx scans), 
check sparking

RESISTIVE MICROMEGAS: Resistive layers are known to quench sparks at early stage
 “Horizontal” evacuation of chargemight be too slow for large areas
 Segmented R-layer to limit physical crosstalk



 Electrical rigidity

 Hole diameter uniformity in GEM

 Gap uniformity in MicroMegas

 THGEM thickness uniformity

 Final detector calibration and 
characterization protocols and 
infrastructure



 Classical gas detectors ageing detector

 Radiation hardness and activation of detector 
components

 Sustainability to neutrons and heavily ionizing 
particles induced discharges 

 Exposure to X-Ray, Gamma, Neutron and 
Alpha Sources

 Monitoring infrastructure

Resistive MicroMegas
stability performance
under X-Ray irradiation

Discharge studies of the triple GEM detector 
exposed to the low energy neutron flux

Portable gas monitoring   
system for detector stability 
studies
 to be used by LHCb and 

CMS upgrade for the 
muon system



https://indico.cern.ch/event/365840/

https://indico.cern.ch/event/392833/

https://indico.cern.ch/event/265187/
Summary (arXiv 1410.1070) Press release

(understanding requirements, 
applications, approaching new 
communities and technologies)

Photon DetectionNeutron Detection 1st Neutron Detection 2nd

Platform: Research + industry + potential users to foster collaboration on dedicated applications

https://indico.cern.ch/event/365840/
https://indico.cern.ch/event/392833/
https://indico.cern.ch/event/265187/


A large Community - Strong interaction with RD51
Use of MPGD Detector R&D, tools and electronics (RD51 SRS & ATLAS NSW VMM)



RD51 participated in XII ICFA School (Bogota, Colombia)

RD51 Organized Events:
MPGD assembly

RD51 participated in Danube School on Instrumentation (Novi Sad Serbia)

RD51 MPGD Lectures:
MPGD students lectures (1 week) at the 
International Workshop on Advance 
Detectors & RD51 CM in Kolkata

MPGD simulation

MPGD electronics

The vitality of the MPGD community 
resides in the relatively large number 
of young scientists
 educational events constitute an 

important activity. 



RD51

Cosmic Ray Muon Tomography 
Using GEMs for Homeland security

 Applications area will benefit from the technological developments developed by the RD51
 The responsibility for the completion of the application projects lies with the institutes themselves

Technology

T2DM2: Temporal Tomography
Densitometric by the Measure of Muons

Liquid xenon detectors for  functional
medical imaging

Technology

CsI-RETGEM for UV
flame detection



 Focus on providing techniques for calculating electron transport in small-scale structures
 The main difference with traditional gas-based detectors is that the electrode scale 

(~ 10 µm) is comparable to the collision mean free path

Microscopic Tracking (Development and Maintenance of Garfield++):
Garfield++ is a collection of classes for the detailed simulation of  small-scale detectors. 

Garfield++ contains:
- electron and photon transport using cross sections provided by Magboltz
- ionisation processes in gases, provided by Heed and MIP
- ionisation and electron transport in semi-conductors
- field calculations from finite elements, boundary elements, analytic methods

Simulation Improvements:
 Transport:

- ion mobility and diffusion, measurement and modelling
- Magboltz cross sections (Ar, Xe, He, Ne; GeH4, SiH4, C2H2F4 ) are frequently 
updated in collaboration with LXCAT  (http://www.lxcat.laplace.univ-tlse.fr)

- e-ion recombination process in Xe
- thermal motion
 Photons:
- update in UV emission
- inclusion of IR production
- photon trapping and resulting excitation transport
- photon absorption in the gas (gas feedback)
- photon absorption in and electron emission from walls (feedback)
- photo cathodes

http://www.lxcat.laplace.univ-tlse.fr/


Applications:
 GEM: multiplication process and polyimide properties; charging up effects
 MicroMegas: timing and effects of resistive layers; 
ATLAS NSW upgrade: study of electron losses in MM with different mesh specifications

 TPC GEM: ion backflow
ALICE TPC upgrade:  rate dependence of the Ion Back Flow in GEM

Measurement 

Simulation 



• ANSYS: field model 

• Magboltz 9.0.1: relevant 
cross sections of electron-
matter interactions

• Garfeld++:  simulate 
electron avalanches

Electric Field Intensity during 
the charging-up process:

each iteration correspond to 
the number of primary 
electrons that already reached 
to the hole

Charging effects are much smaller after (100 – 150) *105 avalanches
 GEM gas gain stabilizes



Physical Overview of  SRS:

 Scalability from small to large system  
 Common interface for replacing the chip

frontend 
 Integration of proven and commercial 

solutions for a minimum of development
 Default availability of a very robust and

supported DAQ software package

RD51 Development / Industrialization: portable multi-channel readout system (2009-2012)

 Scalable readout architecture: from ~ 100 channels up to very large LHC systems (> 100 k ch.)
 Project specific part (ASIC) + common acquisition hardware and software

Frontend hybrids: 
based on 
APV25, VFAT, Beetle, 
VMMx and Timepix
chips

FEC cards (common):
Virtex-5 FPGA, Gb-
Ethernet, DDR buffer, NIM 
and LVDS pulse I/O, High 
speed  Interface connectors 
to frontend adapter cards

ADC  frontend adapter 
for APV and Beetle chips

ADC plugs into  FEC  to
make a 6U  readout unit for
up to 2048 channels 



http://indico.cern.ch/event/356113/session/6/contribution/29/material/slides/1.pdf

SRS & APV25 FE chip
Worldwide use in the RD51 community (>2000 hybrids)

Very appealing for the future: VMM (NSW ATLAS FE chip)

SRS-FEC+TOTEM DAQ

SRS: Different System
SRS for R&D on Detectors

SRS for experiments (ATCA)

SRS for spatially distributed 
system (optical SRS)Baseline solution for 

RD51 SRS community.

Interest and support 
from  ESS (European 
Spallation Source) and 
ALICE FOCAL

SRS+SiPM (NEXT TPC)

2015

SRS+Timepix (LC-TPC) – Bonn/Desy

E. Oliveri

http://indico.cern.ch/event/356113/session/6/contribution/29/material/slides/1.pdf


https://indico.cern.ch/event/352483/

Construction of the new 
workshop’s building:

Start : beginning 2012
End: end 2017

New Capabilities….

MPGD Projects….

installation of the new infrastructure (to fabricate 2x1m2

Bulk MM & 2x0.5m2 GEM) COMPLETED 

Antonio Teixeira

Interesting Workshop Overview Capabilities
OK

OK

OK

OK

OK

OK

https://indico.cern.ch/event/352483/


GEM Technology (contacts):

 Mecharonix (Korea, Seoul) 
 Tech-ETCH (USA, Boston)
 Scienergy (Japan, Tokyo)
 TECHTRA (Poland, Wroclaw

THGEM Technology (contacts):

 ELTOS S.p.A. (Italy), 
 PRINT ELECTRONICS

MicroMegas Technology(contacts):

 ELTOS S.p.A. (Italy) 
 TRIANGLE LABS(USA, Nevada)
 SOMACIS (Italy, Castelfidarco)
 ELVIA (France, CHOLET)

GEM Licenses signed by:
 Mecharonics, 21/05/2013
 TECH-Etch, 06/03/2013
 China IAE, 10/01/2012
 SciEnergy, 06/04/2009
 Techtra, 09/02/2009
 CDT, 25/08/2008
 PGE, 09/07/2007

Technology Industrialization  transfer “know-how” from CERN workshop to industrial partners

GEM Industrialization Status (June 2015): Micromegas Industrialization Status (June 2015):

ATLAS NSW upgrade will first detector mass-
produced in industry 

using a large high-granularity Micromegas:
det. area ~1300 m2 divided into 2 m x 0.5 m2 units

TECH-ETCH
• Single Mask process fully understood. Many 10cm x 10cm produced 
and characterized.
• 40cm x 40cm GEM successfully produced
• CMS GE1/1 size of 1m x 0.5m started

TECHTRA
• Production Line Operational
• Stable process for 10cm x 10cm
• Single Mask process completely understood – 10cm x 10cm produced
•30cm x30cm Single Mask Produced

MECHARONICS
• 10cm x 10cm double mask produced and tested
• 30cm x 30cm double mask under evaluation @ CERN
•CMS GE1/1 size of 1m x 0.5m started 

ELVIA
• Bulk Micromegas detectors are routinely produced with sizes up to 
50cm x 50 cm.
• Contract for ATLAS NSW module-0 signed
•Tendering process for full production ongoing

ELTOS
• Many small size bulk Micromegas detectors have been produced.
• Contract for ATLAS NSW module-0 signed
•Tendering process for full production ongoing



Technical support 
MPGD Detectors

Gas system and services
Readout electronics (std and 

custom RD51 SRS&APV)
Radioactive Sources

Interface with CERN services 
(RP, gas, metrology, irradiation 

facilities,…)

Permanent installations (Today): ALICE, ATLAS,  ESS
CMS moved roughly two years ago to TIFF, access to the lab for specific measurements
More than 15/20 groups per year coming to perform measurements

Clean Rooms Mechanical and Electronic Workshop

E. Oliveri



2014 test Beam

CMS (GEM) WIS/A/C(WELL, THGEM) ATLAS NSW (mm) BESS III & SHIP (GEM) LAPP/DEM/IRFU(mm) ALICE TPC (GEM and mm)

Building 887 – EHN1
H4 (PPE134)

Three periods of two 
weeks each per year
About fifteen-twenty 
users per year

Goliath Magnet (1.4 T)
 Ship Experiment?

2008-2015: ~ 40 RD51 groups participated (2015 test Beam: May-June, July, October)

E. Oliveri



MPGD conferences & RD51CM

IWAD conference & 
RD51 Collaboration Meeting



A fundamental boost is offered by RD51: 
from isolate MPGD developers to a world-
wide net 

A combined map of organizations working 
with MPGDs built with collaboration-spotting 
software developed at CERN
 huge growth in interest in the MPGD 

technologies

Collaboration Spotting Software:
http://collspotting.web.cern.ch/)

J.-M. Le Goff

http://collspotting.web.cern.ch/


1998 2014
GEM GEM

Micromegas: Micromegas:

1998 2014

J.-M. Le Goff



CERN Courier, October 2015



Wire Chambers, TPC, RPC MPGD (GEM, Micromegas)  InGrid (3D)

Micromegas:

Ingrid

TODAY: FUTURE:YESTERDAY: INTEGRATION INTEGRATION

Advances in photolithography 
Large Area MPGDs (~ m2 unit size)

High rate capability ~106 Hz/mm2

 Spatial res. ~ 30-50 µm (TRACKING)
 Time res. ~ 3-5 ns (TRIGGER)

LHC
HL-LHC

ILC
ILC

CLIC



MPGD Characteristics Gas Electron 
Multipliers (GEM)

Micromegas/
Resistive MM

 Active areas 
(Size of single detector module) /
Large Scale Industrial Production

~ 1 x 0.5 m2

yes
~ 2 x 1 m2

yes

 Radiation Hardness > 10 HL-LHC years > 10 HL-LHC years

 High-Rate Capability ~ 50 MHz/cm2 Res MM (MHz/cm2):
~ 0.1  (today)

~ 10 - 50  (future)
 Spatial resolution <~30 µm 

(single layer)
<~30 µm 

(single layer)
ang. dep.: µTPC

 Tracking efficiency 99% 98%
 Triggering efficiency (25 ns timing 

and B-field)
95-98% 95-98%

 Timing Resolution ~4-5 ns (MIP) & CF4
how to improve (?)

3-5 ns (MIP) & CF4
how to improve (?)
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