

Sapphire Detectors

Sergej Schuwalow, Uni Hamburg / DESY Zeuthen

collaboration

Contents

- Sapphire (Al_2O_3) properties
- Synthesis of sapphire
- Charge collection efficiency
- Radiation hardness
- Application at FLASH, signal shape
- Detection of MIPs
- Sensor configurations
- Test beam at DESY 08.2013
- Preliminary results
- Conclusions and outlook

Sapphire properties

Density	3.98 g cm⁻³	3.52 g cm^{-3}
Dielectric constant	t 9.3 - 11.5	5.7
Breakdown field	~10 6 V cm $^{-1}$ *	107 V cm ⁻¹
Resistivity	>10¹ ⁴ Ω cm	>10¹¹ Ω cm
Band gap	9.9 eV	5.45 eV
Electron mobility 🔬	~600 (20°C) **	$1800 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$
Hole mobility	30000 (40ºK) **	$1200 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$
Average signal crea	ated 22 eh µm	1 ⁻¹ 36 eh µm ⁻¹

(Diamond)

* Typical operation field ~10⁴ V cm⁻¹

**Optical-Pump/THz-Probe Spectroscopy

Synthesis of sapphire (Al₂O₃)

- Single crystals are grown by Czochralski process
- Growing speed ~100 mm/hour
- Up to 440 mm diameter crystals
- Crystal weight up to ~500 Kg
- World annual production >250 tons
- Used in chemistry, electronics, semiconductor industry, lasers, etc.

Impurity	Na	Si	Fe	Ca	Mg	Ni	Ti	Mn	Cu	Zr	Y
ppm	8	2	5	5	1	<3	<1	3	<3	2	2

Sapphire charge collection efficiency Measured at ⁹⁰Sr setup SC Sapphire Sapphire charge collection efficiency 10x10x0.5 mm³ 10 CCE, percent **Metallization** 8 Al+Ti+Au 6 Signal ~ 600 e⁻ ³⁰Sr 4 -HV c 2 500 μm sample, MIP signal 0 -2 200 400 600 800 1000 0

Bias, V

6 December 2013

Irradiation of sapphire and diamond sensors at 10 MeV electron beam

10 MGy ~ $5 \cdot 10^{16}$ MIPs ~ $2.5 \cdot 10^{15}$ [1 MeV neq] (NIEL, G.P.Summers)

Instrumentation Seminar, DESY, Hamburg

Instrumentation Seminar, DESY, Hamburg

Detection of MIPs

Instrumentation Seminar, DESY, Hamburg

Test beam at DESY 08.2013

• 5 GeV electrons + pixel telescope

Test beam at DESY. EUDET telescope

Detector support platform at XY-table

Test beam at DESY. Detector installed

Telescope information only, XY of vertices

6 December 2013

16

Sapphire detector signal, 500 V bias DUT information only

Sapphire detector signal, 500 V bias DUT information only

Sapphire detector signal vs bias voltage

Conclusions and outlook

- Sapphire (single crystal Al₂O₃) is a very promising wide-bandgap material for HEP applications
- Produced in large quantities for industrial purposes, large size wafers are available (~25 cm, up to 40 cm diameter is possible), not expensive
- Perfect electrical properties, excellent radiation hardness, but presently low charge collection efficiency (~ 5%, probably due to high level of impurities)
- For many applications, where radiation hardness is an issue (large particle fluxes), sapphire could be used as it is, i.e. leakage current sensors, detection of particle bunches, calorimetry etc
- Sapphire sensors are successfully operating at FLASH, are to be installed at FLASH-2 and XFEL
- Sapphire sensors could be used for MIP detection in cases where tracker material budget is not critical (beam diagnostics, very forward tracking)
- Sapphire detector designed for MIP detection was tested at the DESY test beam. Preliminary results show expected performance.
- Further developments will follow.

Thank you!

Optical-pump/THz-Probe Spectroscopy

40 - 350 K⁰ F.Wang et.al., 2004

Ultrafast photo-excitation + THz time-domain spectroscopy

Irradiation of sapphire and diamond sensors at 10 MeV electron beam

Leakage current after irradiation is still at few pA level

Instrumentation Seminar, DESY, Hamburg

Test of sapphire and quartz sensors at the 10 MeV electron beam

Other two samples. Some recovery effect for sapphire during beam interruptions.

Instrumentation Seminar, DESY, Hamburg