

Goals, Status and Tools (including instrumentation...)

#### Babette Döbrich (for ALPS)

Instrumentation Seminar DESY Hamburg, April 26th 2013







#### > ALPS-II: Motivation, Goals and Tools Overview

- > Laser and optics
- > Magnet system
- > Detection system
- > Closing words



### Theory and Motivation in a Nutshell

# Light particles ( $\sim$ sub-eV) can have evaded detection if very weakly coupled to known particles

#### Motivation comes from..

- > fine-tuning issues in the Standard Model (Axion)
- > astrophysical hints (Dark Matter & astro-phenomena)
- > Standard Model Extensions (e.g. String Theory)

 $\Rightarrow$  search the most promising mass-coupling parameter space for such particles (axion-like particles, hidden photons, minicharged particles...) with appropriate/available means

























#### Possible upgrades

> (Even) More photons  $\rightarrow$  enhanced probability

#### **Technical realization**

> *coupled* cavities on both sides of the wall





**Possible upgrades** 

- > (Even) More photons  $\rightarrow$  enhanced probability
- > better single photon detection

#### **Technical realization**

- > *coupled* cavities on both sides of the wall
- Transition edge sensor (CCD low Q.E. for inrared)





#### Possible upgrades

- > (Even) More photons  $\rightarrow$  enhanced probability
- > better single photon detection
- > More (magnetic) length

#### **Technical realization**

- > *coupled* cavities on both sides of the wall
- Transition edge sensor (CCD low Q.E. for inrared)
- > enhance length  $\rightarrow$  tunnel, more HERA dipoles



| Parameter                             | Scaling                                       | ALPS-I                    | ALPS-IIc                    | Sens. gain |
|---------------------------------------|-----------------------------------------------|---------------------------|-----------------------------|------------|
| Effective laser power $P_{\rm laser}$ | $g_{a\gamma} \propto P_{\text{laser}}^{-1/4}$ | $1 \mathrm{kW}$           | $150  \mathrm{kW}$          | 3.5        |
| Rel. photon number flux $n_\gamma$    | $g_{a\gamma} \propto n_{\gamma}^{-1/4}$       | $1~(532\mathrm{nm})$      | $2~(1064\mathrm{nm})$       | 1.2        |
| Power built up in RC $P_{\rm RC}$     | $g_{a\gamma} \propto P_{reg}^{-1/4}$          | 1                         | 40,000                      | 14         |
| BL (before & after the wall)          | $g_{a\gamma} \propto (BL)^{-1}$               | $22\mathrm{Tm}$           | $468\mathrm{Tm}$            | 21         |
| Detector efficiency $QE$              | $g_{a\gamma} \propto Q E^{-1/4}$              | 0.9                       | 0.75                        | 0.96       |
| Detector noise $DC$                   | $g_{a\gamma} \propto DC^{1/8}$                | $0.0018  \mathrm{s}^{-1}$ | $0.000001  \mathrm{s}^{-1}$ | 2.6        |
| Combined improvements                 |                                               |                           |                             | 3082       |

#### > ALPS-II vs ALPS-I:

- > (magnetic) length  $\sim 21'$
- > optics' $\sim 59$ '
- > detector '  $\sim 2.5$  '



| Parameter                                | Scaling                                       | ALPS-I                    | ALPS-IIc                    | Sens. gain |
|------------------------------------------|-----------------------------------------------|---------------------------|-----------------------------|------------|
| Effective laser power $P_{\text{laser}}$ | $g_{a\gamma} \propto P_{\text{laser}}^{-1/4}$ | $1  \mathrm{kW}$          | $150  \mathrm{kW}$          | 3.5        |
| Rel. photon number flux $n_\gamma$       | $g_{a\gamma} \propto n_{\gamma}^{-1/4}$       | $1~(532\mathrm{nm})$      | 2 (1064  nm)                | 1.2        |
| Power built up in RC $P_{\rm RC}$        | $g_{a\gamma} \propto P_{reg}^{-1/4}$          | 1                         | 40,000                      | 14         |
| BL (before & after the wall)             | $g_{a\gamma} \propto (BL)^{-1}$               | $22\mathrm{Tm}$           | $468\mathrm{Tm}$            | 21         |
| Detector efficiency $QE$                 | $g_{a\gamma} \propto Q E^{-1/4}$              | 0.9                       | 0.75                        | 0.96       |
| Detector noise $DC$                      | $g_{a\gamma} \propto DC^{1/8}$                | $0.0018  \mathrm{s}^{-1}$ | $0.000001  \mathrm{s}^{-1}$ | 2.6        |
| Combined improvements                    |                                               |                           |                             | 3082       |



#### > ALPS-II vs ALPS-I:

- > (magnetic) length  $\sim 21'$
- > optics' $\sim 59$ '
- > detector ' $\sim 2.5$ '

### > staged approach:

> ALPS-IIa (until 2014) 10m+10m *without* magnets



| Parameter                             | Scaling                                       | ALPS-I                    | ALPS-IIc                    | Sens. gain |
|---------------------------------------|-----------------------------------------------|---------------------------|-----------------------------|------------|
| Effective laser power $P_{\rm laser}$ | $g_{a\gamma} \propto P_{\text{laser}}^{-1/4}$ | $1  \mathrm{kW}$          | $150  \mathrm{kW}$          | 3.5        |
| Rel. photon number flux $n_\gamma$    | $g_{a\gamma} \propto n_{\gamma}^{-1/4}$       | $1~(532\mathrm{nm})$      | $2~(1064\mathrm{nm})$       | 1.2        |
| Power built up in RC $P_{\rm RC}$     | $g_{a\gamma} \propto P_{reg}^{-1/4}$          | 1                         | 40,000                      | 14         |
| BL (before & after the wall)          | $g_{a\gamma} \propto (BL)^{-1}$               | $22\mathrm{Tm}$           | $468\mathrm{Tm}$            | 21         |
| Detector efficiency $QE$              | $g_{a\gamma} \propto Q E^{-1/4}$              | 0.9                       | 0.75                        | 0.96       |
| Detector noise $DC$                   | $g_{a\gamma} \propto DC^{1/8}$                | $0.0018  \mathrm{s}^{-1}$ | $0.000001  \mathrm{s}^{-1}$ | 2.6        |
| Combined improvements                 |                                               |                           |                             | 3082       |



#### > ALPS-II vs ALPS-I:

- > (magnetic) length  $\sim 21'$
- $>~{\rm optics}`\sim 59"$
- > detector ' $\sim 2.5$ '

#### > staged approach:

- > ALPS-IIa (until 2014) 10m+10m without magnets
  - > ALPS-IIb (2015) 100m+100m without magnets (HERA West)



| Parameter                             | Scaling                                       | ALPS-I                    | ALPS-IIc                    | Sens. gain |
|---------------------------------------|-----------------------------------------------|---------------------------|-----------------------------|------------|
| Effective laser power $P_{\rm laser}$ | $g_{a\gamma} \propto P_{\text{laser}}^{-1/4}$ | $1  \mathrm{kW}$          | $150  \mathrm{kW}$          | 3.5        |
| Rel. photon number flux $n_\gamma$    | $g_{a\gamma} \propto n_{\gamma}^{-1/4}$       | $1~(532\mathrm{nm})$      | $2~(1064\mathrm{nm})$       | 1.2        |
| Power built up in RC $P_{\rm RC}$     | $g_{a\gamma} \propto P_{reg}^{-1/4}$          | 1                         | 40,000                      | 14         |
| BL (before & after the wall)          | $g_{a\gamma} \propto (BL)^{-1}$               | $22\mathrm{Tm}$           | $468\mathrm{Tm}$            | 21         |
| Detector efficiency $QE$              | $g_{a\gamma} \propto Q E^{-1/4}$              | 0.9                       | 0.75                        | 0.96       |
| Detector noise $DC$                   | $g_{a\gamma} \propto DC^{1/8}$                | $0.0018  \mathrm{s}^{-1}$ | $0.000001  \mathrm{s}^{-1}$ | 2.6        |
| Combined improvements                 |                                               |                           |                             | 3082       |



#### > ALPS-II vs ALPS-I:

- > (magnetic) length  $\sim 21'$
- $>~{\rm optics}`\sim 59"$
- > detector '  $\sim 2.5$  '

#### > staged approach:

- > ALPS-IIa (until 2014) 10m+10m *without* magnets
  - > ALPS-IIb (2015) 100m+100m without magnets (HERA West)
  - > ALPS-IIc (2017) 100m+100m with magnets (HERA North)



Babette Döbrich (for ALPS) | Instrumentation Seminar | April 26th 2013 | Page 5

### Status & Organizational matters





### Status & Organizational matters



- > Towards ALPS-IIa data in 50/607
- > Technical design report submitted to DESY PRC in August 2012
- > ALPS-II review at PRC in Zeuthen in November 2012
- > approval for ALPS-IIa and b in Feb. 2013 and TDR on arXiv:1302.5647
- > ALPS group in DESY FH division, headed by Andreas Ringwald



### Status & Organizational matters







- > Towards ALPS-IIa data in 50/607
- > Technical design report submitted to DESY PRC in August 2012
- > ALPS-II review at PRC in Zeuthen in November 2012
- > approval for ALPS-IIa and b in Feb. 2013 and TDR on arXiv:1302.5647
- > ALPS group in DESY FH division, headed by Andreas Ringwald
- > People and collaborators
  - > 3 institutions (DESY, UHH, AEI)
  - > 4 (part-time) scientists, 3 retired,
    - 2 postdocs, 4 PhD students
  - > tentative expansion!





#### > ALPS-II: Motivation, Goals and Tools Overview

- > Laser and optics
- > Magnet system
- > Detection system
- > Closing words





- > coupling the resonators
  - > "photon selfinterference" experiment:
    - arXiv:1101.4089, theory: Hoogeveen/Ziegenhagen
  - > momentum conservation  $\rightarrow$  frequency-lock (PDH) the two cavities





Babette Döbrich (for ALPS) | Instrumentation Seminar | April 26th 2013 | Page 8





- > coupling the resonators
  - "photon selfinterference" experiment:
    - arXiv:1101.4089, theory: Hoogeveen/Ziegenhagen
  - > momentum conservation → frequency-lock (PDH)
    - the two cavities
  - lock with green, resonant for infrared (signal)
  - 🞇 mind the colors!





- > coupling the resonators
  - > "photon selfinterference" experiment:
    - arXiv:1101.4089, theory: Hoogeveen/Ziegenhagen
  - > momentum conservation  $\rightarrow$  frequency-lock (PDH)
  - the two cavitieslock with green, resonant
    - for infrared (signal)
  - > mind the colors!
- > experimental status
  - > 1m test-proof-of-principle in Hannover





- > coupling the resonators
  - > "photon selfinterference" experiment:
    - arXiv:1101.4089, theory: Hoogeveen/Ziegenhagen
  - > momentum conservation  $\rightarrow$  frequency-lock (PDH) the two cavities
  - lock with green, resonant for infrared (signal)
  - > mind the colors!
  - experimental status
    - > 1m test-proof-of-principle in Hannover
    - towards implementation at DESY





- > experience sets goal:  $PB_{PC} = 5000,$  $PB_{RC} = 40000$
- > pipe aperture limits PB due to clipping





- > experience sets goal:  $PB_{PC} = 5000$ ,  $PB_{RC} = 40000$
- pipe aperture limits PB due to clipping
- > large aperture for ALPS-IIa and b (HERA straight)





- > experience sets goal:  $PB_{PC} = 5000,$   $PB_{RC} = 40000$ 
  - pipe aperture limits PB due to clipping
  - large aperture for ALPS-IIa and b (HERA straight)
  - ALPS-IIc  $\rightarrow$  effective aperture 35mm limits to 4+4 dipoles (not enough) at proposed PB but "true" aperture larger (55mm)





- > experience sets goal:  $PB_{PC} = 5000,$  $PB_{RC} = 40000$
- > pipe aperture limits PB due to clipping
- > large aperture for ALPS-IIa and b (HERA straight)
- > ALPS-IIc → effective aperture 35mm limits to 4+4 dipoles (not enough) at proposed PB but "true" aperture larger (55mm)
- > reestablish "true aperture"?





#### > ALPS-II: Motivation, Goals and Tools Overview

- > Laser and optics
- > Magnet system
- > Detection system
- > Closing words

















- > force on cold mass
- pressure screws at lower flanches
- pressure prop at middle and ends
- requires modified suspensions



- > force on cold mass
- > pressure screws at lower flanches
- > pressure prop at middle and ends
- > requires modified suspensions
- > good to know







- > force on cold mass
- > pressure screws at lower flanches
- > pressure prop at middle and ends
- > requires modified suspensions
- good to know
  - first tests with "PR" magnet (non-functional)







#### howto

- > force on cold mass
- > pressure screws at lower flanches
- > pressure prop at middle and ends
- requires modified suspensions
- good to know
  - first tests with "PR" magnet (non-functional)
  - > real-life tests with ALPS-I magnet (hall 55)



Babette Döbrich (for ALPS) | Instrumentation Seminar | April 26th 2013 | Page 11



- > force on cold mass
- > pressure screws at lower flanches
- > pressure prop at middle and ends
- > requires modified suspensions
- good to know
  - first tests with "PR" magnet (non-functional)
  - > real-life tests with ALPS-I magnet (hall 55)
  - > ultimate setup: 24 spare magnets at Reemtsma
  - > even reversible





> ALPS-II: Motivation, Goals and Tools Overview

> Laser and optics

> Magnet system

> Detection system

> Closing words



# Detector requirements and TES working principle



- > Experimental needs
  - > low rates of single infrared photons (<1/h)</p>
  - > high quantum efficiency (PIXIS: 1.2%)
  - > low background



## Detector requirements and TES working principle

pic ad.: Miller Appl.Phys.Lett. 83/4



#### > Experimental needs

- > low rates of single infrared photons (<1/h)</p>
- > high quantum efficiency (PIXIS: 1.2%)
- > low background
- TES working principle
  - > TES = superconducting absorber at transition T
  - $\,>\,$  fiber  $\rightarrow$  guide light there
  - > Photon absorption  $\rightarrow$  current change  $\rightarrow$  pick up by SQUID



# Detector requirements and TES working principle



#### > Experimental needs

- > low rates of single infrared photons (<1/h)
- > high quantum efficiency (PIXIS: 1.2%)
- > low background
- TES working principle
  - > TES = superconducting absorber at transition T
  - $\,>\,$  fiber  $\rightarrow$  guide light there
  - > Photon absorption  $\rightarrow$  current change  $\rightarrow$  pick up by SQUID
  - TES from NIST (and AIST) coated e.g. Tungsten (~ 100mK) or Ti/Au (~ 200mK)



### Milli-Kelvin environment

#### $\downarrow$ control rack



- > 'Entropy' mK environment
  - > dry (helium confined) & compact (only water & electricity)
  - > time at <100mk: 48h
  - > recharge time 1h



### Milli-Kelvin environment



- 'Entropy' mK environment
  - > dry (helium confined) & compact (only water & electricity)
  - > time at <100mk: 48h
  - > recharge time 1h
- working principle
  - > 4K pulse-tube stage
  - > isothermal magnetization,
    - adiabatic demagnetization



# Milli-Kelvin environment





> 'Entropy' mK environment

- > dry (helium confined) & compact (only water & electricity)
- > time at <100mk: 48h
- > recharge time 1h
- > working principle
  - > 4K pulse-tube stage
  - > isothermal magnetization,
    - adiabatic demagnetization





> ALPS-II: Motivation, Goals and Tools Overview

> Laser and optics

> Magnet system

> Detection system

> Closing words



Babette Döbrich (for ALPS) | Instrumentation Seminar | April 26th 2013 | Page 15

#### ALPS-II...

- > looks for light beyond-Standard-Model particles with the 'light-shining-through-a-wall' principle
- > combines a variety of techiques and methods (single photon detection, high-finesse cavities, accelerator infrastructure..)
- > strives towards discovery (or exclusion) of new particles in 3 stages in the following 4-5 years



### Questions? Please ask also:





- Magnet/Site: Dieter Trines + team
- Detector: Dieter Horns (staff HH), Friederike Januschek (Postdoc), Jan Dreyling-Eschweiler, Jan-Eike von Seggern (PhD)
- Safety/Eng.: Richard Stromhagen
- Howto: Ernst-Axel Knabbe (staff)
- Science case & miscellanea: Axel
  Lindner, Andreas Ringwald (staff),

Babette Döbrich (Postdoc)



Bonus material



Babette Döbrich (for ALPS) | Instrumentation Seminar | April 26th 2013 | Page 18

### How straight are the magnets?



 measurement so far only cooled down, achieved ~50mm, Measurement at cold forseen



### Photon signal and TES coupling





- > single photon signals
- > time/ energy resolution  $\sim 1\mu s/\!\sim 0.1 {\rm eV},$  quantum efficiency up to 99%  $_{\rm Lita~et~al.,}$

Proc. SPIE 681, 76810D (2010)

- not very fast, but almost background free
- good timing resolution valueable in case of unstable lock
- SQUID array acts as transimpedance element



# Discovery potential in mass-coupling



- > Axion-like particles  $\mathcal{L}_{\rm int,PS} \sim g \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$
- hidden (dark/heavy) photons from string & field-theory extensions

 $\mathcal{L} \sim \chi F_{\mu\nu} X^{\mu\nu} + m_{\tilde{\gamma}}^2 / 2 X_\mu X^\mu$ 

- > minicharged particles
- scalar fields of massive gravity theories [1206.1809]



Babette<sup> $m_{y'}$ [cY] Dobrich (for ALPS) | Instrumentation Seminar | April 26th 2013 | Page 21</sup>