

A 1-D Imaging RIXS Spectrometer for Ultra-fast Phenomena and NonLinear Science at European XFEL

Joseph Nordgren Dept. of Physics and Astronomy, Uppsala University, Sweden

Outline

- RIXS tutorial and scientific opportunities
- Experimental considerations
- The proposed instrument

RIXS publication rates

L.J.P Ament, et al, arXiv:1009.3630v2

UPPSALA UNIVERSITET

Examples Valence-Core X-ray Emission

Carbon allotropes

Phthalocyanines

Y. Zhang *et al., Thin Solid Films*, **515**, 394–400 (2006)

Resonant X-ray emission

Resonant Inelastic X-ray Scattering (RIXS)

Inelastic scattering cross section (*Kramers-Heisenberg* formula): $F(\omega,\omega') = \sum_{f} \left| \sum_{m} \frac{\langle f | D | m \rangle \langle m | D | g \rangle}{E_{g} + \hbar \omega - E_{m} - i\Gamma_{m}} \right|^{2} \delta(E_{g} + \hbar \omega - E_{f} - \hbar \omega')$

Features of RIXS spectra:

- Site selectivity
- Symmetry selectivity
- Probing of low-energy excitations
- Sub-natural width spectra
- Ultra-fast dynamics
- Bulk and buried structures
- Band dispersion

Review: J. Nordgren *et al.*, in *Handbook of Solid State Spectroscopy*, Springer 2006, Ed. W.R. Wij

Analysis Capability of RIXS for Cu compounds

Malachite

K. Kvashnina, et al, J. Phys. Cond. Mat. 19, No. 226002 (2007)

Elementary Excitations in Strongly Correlated Materials

For original work, see e.g., S. Butorin, *et al.*, *Phys. Rev. Lett.*, **77**, 574 (1996) For excellent review, see L.J.P. Ament, *et al.*, *Rev.M od.*, *Phys.*, **83**, No.2 (2011)

Experimental setup for RIXS

SQS Scientific Instrument

XFEL Photon beam transport systems

M. Meyer, Joint Instrumentation Seminar, November 11, 2011

N X X X

SQS Scientific Instrument European XFEL SQS end-station AQS - Chamber

NQS - Chamber

27

Non-linear processes in FEL beam interaction

Yu-Ping Sun, Faris Gelmukhanov

PHYSICAL REVIEW A 81, 013812 (2010)

Spatial resolution for cylindrical mirror

Principle of Wolter Microscope

Wolter, H. 1952, Annalen der Physik (6. Folge) 10, 94

J.A. Jackson, LLNL report UCRL-TR-220019 (2006)

Comparison Cylindrical mirror – Wolter pair @ 150 μm detector resolution

Imaging detectors for Soft X-rays

Issues:

Resolution - < 50 μ m Sensitivity at various incidence angles Speed – 220 ns pulse separation

Back thinned CCD MCP with various read-outs Pixelled silicon devices with on-board memory

Striped Time Delay Detector

UPPSALA UNIVERSITET

Temporal resolution - Wolter optics @ 150 µm detector resolution

Photon Energy Resolution

Photon Energy Resolution

Other Applications of 1-D Imaging RIXS

- Spectroscopic imaging
 - Non-homogeneous samples
 - Graded sample composition

RIXS maps

RIXS Maps

Acknowledgement

- Marcus Agåker
- Jan-Erik Rubensson
- Carl-Johan Englund
- Michael Meyer
- Monica Turcato
- Markus Kuster

